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ABSTRACT  

 

In recent days Fractals and study of their phenomenon have became an interesting and important 

concept in the field of Mathematics. Benoit Mandelbrot (1975), known as father of fractal geometry 

was first, who originated the term “Fractals”. A fractal is a rough or fragmented geometric shape 

that can be split into parts, each of which is (at least approximately) a reduced -size copy of the whole 

.These fractals can be typically created by using different iterative methods. This paper explores the 

various iterative techniques to generate Fractals like Julia sets, Mandelbrot sets, Koch curve etc. 

 

Keywords: Fractals, Iterative Techniques, Julia Sets, Mandelbrot Sets, Koch Curve. 

 

1. INTRODUCTION 

 

Benoit Mandelbrot proposed the concept of fractal in 1970s. Fractal has been applied in various 

areas such as science, economics, engineering, cultures and arts because of the universality of fractal 

phenomena. It provides a new and important analytical tool to explore the complexity of the real 

world. Most of the people things that the geometry of nature is based on simple figures such as lines, 

circles, conic sections, polygons, sphere, and quadratic surfaces and so on. For example, tires of the 

vehicle are circular in, Solar system moves around the sun in elliptical orbit. Poles are cylindrical, etc. 

But there are also so many examples of objects in nature which are complex and irregular that cannot 

be represented by classical geometry. Have we ever thought, what is the shape of a cloud? Can we 

describe the structure of plants and trees? Can we model the shape of mountain? All of these 

structures shows that the geometry does not depend on the simple figures like circle, straight line etc. 

The dynamic behavior in nature can also be complex and irregular. 

 

To analyze many of these questions fractals and Mathematical chaos are appropriate tools. These 

fractals can be generated by Iterative Techniques. This paper gives the detail study of important 

fractals generated by one step iterative technique, two-step iterative technique, three-step iterative 

technique and four-step iterative technique.[1-2][3]. 

 

2. FRACTAL 

 

A fractal is a never-ending process. Fractals are infinitely complex patterns that are self-similar across 

different scales. For self-similarity, a shape must be able to be divided into parts that are smaller 

copies which are more or less similar to the whole. Because of the smaller similar divisions of 

fractals, they appear similar at all magnifications. For example if we zoom on a picture of a mountain 

again and again we still see a mountain .This shows the self-similarity of fractals. However, while all 
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fractals are self-similar, not all self-similar forms are fractals for example, the real line (a straight line) 

is formally self-similar but fails to have other fractal characteristics. Natural objects that approximate 

fractals to a degree include tree, seashells, clouds, mountain ranges, lightning bolts, coastlines, 

snowflakes, and various vegetables (cauliflower and broccoli). 

 

3. ITERATIVE PROCESS 

 

A process is called an iterative process or a successive approximation if we apply the formulae for 

again and again to get the desire results, using the result of previous steps in the next step. A 

mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on 

recursion [4]. In 1890, Charles Emile Picard investigated an iterative process. Now Mathematician 

mentions this process as Picard iterations. This iteration process is well known to play a vital role in 

fixed point theory, fractals, numerical analysis, computational analysis and several other areas of 

applicable mathematics. In 1918, French mathematician Gaston Julia [5] investigated the iteration 

process of a complex function intensively and    attained a Julia set, which is a landmark in the field of 

fractal geometry. Given a function and a starting value , one can generate a new value 

 Using the same process, the next value  is obtained by another step 

.This type of process is  an  iterative  process that generates a sequence 

 where  represents the  iterate obtained after applying the function f to  k times. 

This sequence is known as an orbit of its starting point .These iterative procedures are one way to 

obtain the self-similarity exhibited by fractals [3][6] 

 

3.1 Picard Iterative process [7]: It is an example of One-step feedback Process. 

 

Let X be a non-empty set and  such that      

is characterized by Peano–Picard iterations. Also for a point , the set of all iterates of point   

i.e.  

called the Picard orbit (generally called the orbit of f).The Picard iteration is a very useful 

mathematical tool and has been developed particularly for the numerical solution of complex 

problems. 

 

3.2 Mann iterative process [8]: It is an example of Two-step feedback Process. Let X be any subset 

of real or complex and  such that   

where  is known as Mann iterative process. Also for for a 

point , a sequence in X of the form 

 

 
 

, 

: 

: 

 
: 

  

where  and  is convergent , called superior sequence of iterates. 

 

3.3 Ishikawa iterative process [9]: It is an example of Three-step feedback Process. Let X be any 

subset of real or complex and  such that 
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where  and sequences   

 

are convergent to a non-zero numbers. 

This process is known as Ishikawa iterative process. 

 

3.4 Noor iterative process [10]: It is an example of four-step feedback Process. Let X be any subset 

of real or complex and  such that 

 

; 

 

; 

 

    ; 

               

               

 

where  and the sequences  are convergent to a non-zero 

numbers .This process is known as Noor iterative procedure. 

For initial point , the set of all iterates of point  such that 

 

 
 

; 

 

 
 

 
 

called the Noor orbit denoted by NO. 

 

4.  JULIA SETS 

 

French mathematician Gaston Julia introduced the concept of iterative techniques and in 1919 he 

creates the Julia set. The Julia set defines the boundary between prisoner set and escape set [10]. The 

prisoner set is a collection of points inside the Mandelbrot set and escape set is a collection of points 

outside the orbit of Mandelbrot set. Julia sets, which are fractal in nature, can be obtained for 

quadratic, cubic, and higher degree polynomials, by using one-step iterative technique, two-step 

iterative technique, three-step iterative technique, four-step iterative technique .The following is the 

definition of Julia set for  

 

4.1 Definition: The set of points K whose orbits are bounded under the function iteration of  is 

called the filled Julia set. Julia set of  is the boundary of the filled Julia set K. The boundary of a 

set is the collection of points for which every neighborhood contains an element of the set as well as 

an element, which is not in the set [11][12]. 
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The following theorem gives the general R-superior escape criterion for Julia sets and its corollaries 

further shows the escape criterion for computational purposes using Picard orbit. 

 

Theorem 1. Suppose |z|  |c| > 2, where c is in the complex plane. Then we get                

as    

Corollary 1. Suppose |c| > 2. Then the orbit of 0 escapes to infinity under .  

Corollary 2. Suppose |z| > max {|c|, 2}.Then  > | (1+)
 n 

|z| and so |    as n  , 

where  is a positive number. 

Corollary 3. Suppose for some k  0, we have > max {|c|, 2}.                                                  

 Then  > (1+) , so   as n  . 

The Mandelbrot and Julia Set fractals, demand the use of complex numbers to create the basic 

Mandelbrot (or Julia) set. For this one uses the equation    f  , where both Z and C are 

complex numbers. In 2004 M. Rani and V. Kumar [13], introduced the superior Julia and Mandelbrot 

set (two-step feedback Process) using Mann iteration Technique. In 2010, Chauhan [14], created new 

Julia set and Mandelbrot set in the study of fractal geometry. The following theorem gives the general 

R-superior escape criterion for Julia sets and its corollaries further shows the escape criterion for 

computational purposes using R-Superior orbit. 

 

Theorem 2. (General escape criterion) for the function       

where ,  and c is the complex number. Define  

  

  

  

Then, the general escape criterion is 

max  

Corollary 1. Suppose that  and   exits. Then R-Superior orbit 

RSO (  escape to infinity. 

 

Corollary 2. Suppose that                                        max  for 

some .Then  

. This gives the general escape criterion for computing R-superior Julia sets via 

the function of the form  

 

The following figures represent the R-superior Julia sets for quadratic and cubic function using three 

step iterative techniques.  
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Figure 1: R-Superior Julia Sets for Quadratic Figure 2: R-Superior Julia sets for Cubic 

 

Recently, Ashish and R. Chugh (2014) [15] generated new Julia sets via Noor iterates (example of 

four-step feedback process). The following theorem gives the general   escape criterion for Julia sets 

in Noor iterates and its corollaries further presents the escape criterion for computational purposes 

using Noor orbit. 

Theorem 3. (General escape criterion) Assume the function       

where , and c is the complex number. Define  

  

 

  

Then, the general escape criterion is 

max  

Corollary 1. Suppose that  and  exits. 

Then Noor orbit NO (  escape to infinity. 

Corollary 2. (Escape criterion) Suppose that                                        

max       for some . 

Then  

. 

This corollary represents the algorithm to generate Julia set of the function .The 

following figures represent the Julia sets for quadratic and cubic function generated by four step 

iterative technique. 

  
Figure 3: Quadratic Julia set using Noor Iterates Figure 4: Cubic Julia set using Noor Iterates 
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5. MANDELBROT SETS 

In 1982, Mandelbrot [5] extended the work of Gaston Julia and introduced the Mandelbrot set, a set of 

all connected Julia sets. Similar to Julia Sets, Mandelbrot set, which are also fractal in nature, can be 

obtained for quadratic, cubic, and higher degree polynomials, by using one-step iterative technique, 

two-step iterative technique, three-step iterative technique, four-step iterative technique. 

 5.1 Definition: The Mandelbrot set M consists of all parameters c for which the filled Julia set of  

is connected, i.e.    

M      

In fact, M gives large amount of information about the structure of Julia sets. The R-Superior 

Mandelbrot set RSM for the Quadratic  is defined as the collection of all  for which the 

orbit of the point 0 is bounded, i.e.   RSM  is bounded}.  We select the 

initial point 0, as 0 is the only critical point of [16]. The escape criterions studied above for Julia set 

are applicable in the generation of R-superior Mandelbrot sets and Mandelbrot sets Noor orbit. 

Escape Criterion (R-Superior Mandelbrot set) The General escape criterion of R-superior 

Mandelbrot set for  is given by max        

for some . The following figures represent the Mandelbrot sets for quadratic and cubic function 

generated by three step iterative techniques. 

  
Figure 5: Quadratic R-Superior Mandelbrot Set Figure 6: Cubic R-Superior Mandelbrot Set 

 

Escape Criterion (Noor Mandelbrot set) 

The General escape criterion of Noor Mandelbrot set for  is given by                    

max  for some .The following figures represent 

the Mandelbrot sets for quadratic and cubic function generated by four-step iterative technique. 

  
Figure 7: Quadratic Noor Mandelbrot Set Figure 8: Cubic Noor Mandelbrot Set 
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Mandelbrot set given by Mandelbrot and its relative object Julia set have become a wide and 

important area of research due to their beauty and complexity of their nature .The major difference in 

the Julia set and the Mandelbrot set is the iterative  technique in which the function is iterated. The 

Mandelbrot set iterates  with z always starting at 0 and varying the c value. The Julia set 

iterates  for a fixed c value and varying the values of z. In other words, the Mandelbrot set 

is in the parameter space, or the c-plane, while the Julia set is in the dynamical space, or the z-plane. 

6. CONCLUSION 

In this paper, an application of fixed point iterative techniques to generate fractals, using one-step 

iterative technique, two-step iterative technique, three-step iterative technique, four-step iterative 

technique, have been given. Different Julia sets and Mandelbrot sets generated above are examples of 

fractals. Through these iterative techniques more important fractals like Koch curve, Gasket etc. can 

also be generated.  
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