
40

Estimate the Software Reliability

with Recursive Go-Model

Satish Kumar
1
 and Harish

2

 1
Department of Computer Science and Engineering, U.I.E.T.

M.D. University, Rohtak, Haryana, India.
2
Department of Computer Science Engineering, Ganga Technical Campus

Soldha, Bahadurgarh, Haryana, India

International Journal of Research in Computer Applications & Information Technology

Volume 3, Issue 6, November-December, 2015, pp. 40-49

ISSN Online: 2347-5099, Print: 2348-0009, DOA : 15112015

© IASTER 2015, www.iaster.com

ABSTRACT

The probability that software will work and produce desirable outputs for a specified time under a

certain environment is called the reliability of that software. Numerous methods have been designed

which can help in improving the reliability of the software which involves intensive and careful planning

of testing phase and accurate decision-making. This is done with the use of software reliability analysis

model or software reliability growth model. In this article, we are taking into implementation of two

such models, namely Goel-Okomoto model and infection S-shaped model and we are comparing and

contrasting the results obtained, to come to a conclusion as to which model is better and why. A

software reliability model specifies the general form of the dependence of the failure process on the

principle factors that affect it: fault introduction, fault removal, and the operational environment i.e.

Software reliability modelling is done to estimate the form of the failure rate.

Keywords: GO-model, Recursive Technique, Maximum likelihood Method, Dot Net Platform,

Matlab.

1. INTRODUCTION

Software problems are the main causes of system failures today. There are many well-known cases of

the tragic consequences of software failures. In critical systems, very high reliability is naturally

expected. Software packages used everyday also needs to be highly reliable, because the enormous

investment of the software developer is at stake. Studies have shown that reliability is regarded as the

most important attribute by potential customers. All software developed will have a significant

number of defects.

1.1 Different Types of Model of in Software Reliability

For critical business applications, continuous availability is a requirement, and software reliabilityis

an important component of continuous application availability. Software Reliability can be viewed in

many ways as follows.

Binary Concept: Reliability implies probability. A Program may contain no errors and its reliability

is unity. If the program contains errors, then its reliability is zero.

http://www.iaster.com/

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

41

Collection of Design and Test Techniques: All the design methods, used for the design of improved

software and all the testing techniques used for detection and correction of software errors so that the

software in question is relatively error free.

Probabilistic Measure: It is assumed that for a given software, the duration of operation, design

limits and user environment have been specified, Then the probability of successful operation. Non-

occurrence of software errors under the above specified conditions gives the quantitative value of

SWR (Software Reliability) and its value ranges from 0 to 1.

1.2 Classification Based On Failure History

On the basis of failure history, the existing SWRMs (Software Reliability Models) can be grouped

into four main classes as:

 Time Between Failure Models (TBF)

 Fault Count Models (FC Models)

 Fault seeding Models (FS Models)

 Input domain based models (IDB Models)

1.3 Software Reliability Model

Software Reliability Models

Fig 1.1: Classification of Software Reliability Model

1.4 Estimate the Expected Reliability of the Software

To estimate the expected reliability of the software when the product is released. The primary

objective of a software reliability model is to forecast failure behavior of the software that will be

experienced when the software is operational. This expected behavior changes rapidly and it can be

tracked during the period in which the program is tested. Basic assumptions of Goel-Okumoto Model

are: The execution times between the failures are exponentially distributed. The cumulative number

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

42

of failures follows a Non Homogeneous Poisson process (NHPP) by its expected value function µ(t).

For a period over which the software is observed the quantities of the resources that are available are

constant. The number of faults detected in each of the respective intervals is independent of each

other. The mean value function is such that the expected number of error occurrences for any time t

to t+∆t is proportional to the expected number of undetected errors at time t. It is also assumed to be

bounded, non-decreasing function of time with limit→∞.

µ (t)= N.

µ(t)=EE(l-e-bt)………………………………… (1.1)

Where, EE ≥0, b>0

µ(t) = Predicted number of defects at time tEE = Expected total number of defects in the code in

infinite time (it is usually finite) b = Roundness factor/shape factor = the rate at which the failure rate

decreases. t = Calendar time/ execution time/ number of test runs.

Fig 1.2-Plot of Expected Failure in Goel-Okumoto is shown.

1.5 Limitations of Software Reliability Modeling

In this section, the limitations of current software reliability modeling techniques are briefly

discussed. These limitations have to do with:

 Applicability of the model assumptions

 Availability of required data

 The nature of reliability model predictions.

 The life cycle phases during which the models can be applied.

2. LITERATURE SURVEY

NHPP framework has played an influential role in software reliability modeling. However, K. Y. Cai.

[1] have stressed on the fact that no controlled software experiments have been conducted to validate

or invalidate the NHPP framework concept statistically. Due to the pessimism pointed out by many

researchers, this exploratory study intends to categorize the factors that impede the performance of

software reliability models from providing the appropriate remedy to software ills and unreliability

headaches associated with software performance once it is deployed in the field.The concept of

software reliability modeling has been utilized for almost over three decades. A countless number of

software reliability models have been recommended, and the earliest models include the Jelinski and

Moranda model [6], the Shooman model [7], the Nelson model [8], and the Littlewood–Verrall model

[9]. Some of these models have recently been to some extent falsified because of the sweeping

assumptions they made in their derivation and method of operation.Schneidewind [4] formulated an

error detection model that has been extensively utilized in large number of applications. The idea

behind this model is that the current fault rate might be a better predictor of the future behavior than

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

43

the observed rated in the distant past. Musa [10] established a model that has been considered as one

of the most widely used software reliability models which use execution time rather than calendar

time in its calculations. Musa’s basic model assumes that the detections of failures are independent of

one another, perfect debugging is assumed, and the fault correction rate is proportional to the failure

occurrence rate. Goel and Okumoto (henceforth called G-O model) [11] suggested the time dependent

failure rate model, assuming that the failure intensity is proportional to the number of faults remaining

in the software. For instance, G-O model presents a stochastic model for the software failure

phenomenon based on a NHPP. This fundamental assumption of G-O model is somewhat crude. Yet,

it is a simple model for the description of software failure process. The G-O model was transformed

by Grottke and Trivedi [12] for the sake of renovation so that the model might resemble an infinite

failures NHPP model, and the new version is called the truncated Goel-Okumoto model.

 2.1 Problem Statement

Since software reliability test of integrated module is being complex while going over testing through

existing GO Model. Execution of module programming is quite harder task while finding complexity and

it time domain occurrence of errors.With the study of many papers it is figure it out the technique used is

not accurate on module based programming for finding the expected number of error and its reliability.

3. PROPOSED MODEL (IMPLEMENTING THE RECURSIVE TECHNIQUE OVER

THE EXISTED MODEL)

In recursive technique we just need to the existing work of GO-model which is NHHP based on

maximum like hood function. Conventional estimation methods based on fixed size samples, such as

the Maximum Likelihood Method, use calculations involving the complete data set. This is in contrast

to an approach based on sequential methods. Such methods, also known as stochastic recursive

identification algorithms, allow updating of the parameter estimates while using only the last few

observations.

The Goel-Okumoto model is a simple nonhomogeneous Poisson process (NHPP) model (Yamada and

Osaki, 1985) with the following mean value function

μ(t) (a)= e
bt

 ---------------------------------------(3.1)

In using this model, the parameter a is interpreted as the number of initial faults in the software and

the parameter b is the fault detection rate which is related to the reliability growth rate in the testing

process. The corresponding failure intensity function is given by

λ(t) = abe
− bt

--(3.2)

The parameters in the Goel-Okumoto model can be estimated using the maximum likelihood method

based on the number of failures per interval. Set is further divided in subsets. The likelihood function is

………………………….. (3.3)

By taking the natural logarithm of both sides of Eq. 3.3, we have

…………………………………(3.4)

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

44

For Goel-Okumoto model, the derivative of the logarithm of the maximum likelihood function with

respective to the parameters a and b can be calculated and we have

...(3.5)

Solving Eq. 3.5, we get

………………………………3.6)

Since Eq. 3.6 is nonlinear, we cannot find an analytic solution and it must solve numerically. For the

failure data in Table I, the parameter estimates are(where a and b values are taken from [13])

It should be noted that because of the need for large amount of failure data, accurate estimates are difficult

to obtain and the significant digits included here are for the illustration and further comparison.

4. SIMULATION UNDER THE GUI FRAME WORK

This thesis model introduced the existing GO model with recursive technique which same for infected S-shaped

model. So here this is greatly emphasized on GO-model. We construct the framework in .Net platform with C-

sharp. Number of various experiments taken to make the reliability growth for software model.

Input Test Data 1

Error

No

Time to

Failure

Error

No
T2F

Error

No
T2F

Error

No
T2F

Error

No
T2F

Error

No
T2F

1 9 11 6 21 6 31 15 41 21 51 23

2 20 12 2 22 1 32 11 42 19 52 26

3 30 13 16 23 5 33 5 43 19 53 10

4 16 14 31 24 4 34 18 44 11 54 10

5 8 15 12 25 8 35 38 45 12 55 16

6 31 16 8 26 0 36 12 46 13 56 6

7 11 17 9 27 13 37 24 47 11 57 6

8 25 18 3 28 10 38 11 48 10 58 5

9 7 19 4 29 6 39 22 49 40 59 4

10 9 20 7 30 23 40 15 50 26 60 1

 Input Test Data 2

Error

No

Time to

Failure

Error

No
T2F

Error

No
T2F

Error

No
T2F

Error

No
T2F

Error

No
T2F

1 2 11 2 21 4 31 0 41 0 51 0

2 1 12 2 22 4 32 1 42 0 52 0

3 0 13 5 23 4 33 0 43 3 53 0

4 4 14 3 24 0 34 0 44 3 54 0

5 0 15 6 25 0 35 0 45 0 55 0

6 2 16 1 26 0 36 0 46 0 56 0

7 8 17 7 27 1 37 3 47 3 57 0

8 4 18 2 28 2 38 1 48 2 58 0

9 4 19 5 29 0 39 1 49 1 59 0

10 2 20 3 30 0 40 2 50 3 60 0

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

45

4.1 Simulation Result Come Out from Existing Approach (Maximum likelihood METHOD)

Fig 4.1: Software Relianility Tool : This figure shows testing phase in time domain.Here each module tested

under this test duing whole process till the end of all module tested for test data 1.

FIG 4.2: Software Relianility Tool : This figure shows testing phase in time domain.Here each module tested

under this test duing whole process till the end of all module tested for test data 2.

Fig 4.3: Software Relianility Tool : This figure shows testing phase in time domain. Here each module tested

under this test duing whole process till the end of all module tested for test data 3.

Fig 4.4: Number of failure occurred during testing phase clearly showing is in increasing nature So from

reliabilty prediction is hard to predict the growth model for software application and its reliability growth data 1.

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

46

Fig 4.5 Number of failure occurred during testing phase clearly showing is in increasing nature So from

reliabilty prediction is hard to predict the growth model for software application and its reliability growth data 2.

Fig 4.6 Number of failure occurred during testing phase clearly showing is in increasing nature So from

reliabilty prediction is hard to predict the growth model for software application and its reliability growthdata 3.

4.2 Improved Result comes out from proposed model (After Applying Recursive in Existing

GO-Model)

Test data is testing under the dotnet and MATLAB platform.

Fig 4.7 : Start the GUI

Figure 4.8: Load the Input Data

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

47

Figure 4.9: Predicted result saves and analyzed under the MS-Excel

Fig 4.10: Figure shows number of test under separate module vs. testing phase in time domain (Test Data-1)

Fig 4.11: Figure shows number of test under separate module vs. testing phase in time domain (Test Data-2)

Fig 4.12: Figure shows number of test under separate module vs. testing phase in time domain (Test Data-3)

Fig 4.13: Figure shows the graph in between occurrence of error vs. prediction

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

48

Fig 4.14: Figure shows the graph in between occurrence of error vs. prediction

Fig 4.15: Figure shows the graph in between occurrence of error vs. prediction

Result shows the finite estimation of occurrence of error in above result so the proposed model is

much better tools in comparison to existing tools.

4.3 Implication of Proposed Model

Fault avoidance/prevention that includes design methodologies to make software provably fault-free.

After simulation result this research shows very predictive nature of fault avoidance.

Fault removal that aims to remove faults after the development stage is completed. This is done by

exhaustive and rigorous testing of the final product.

Fault tolerance that assumes a system has unavoidable and undetectable faults and aims to make

provisions for the system to operate correctly, even in the presence of faults.

5. CONCLUSION AND FUTURE WORK

We conclude that in order to obtain a high reliability factor the proposed model is preferred over the

existing model for the proposed model correlates better with data from our environment than the

existing model.The difference lies only in the additional (1+bt) factor in existing model which, after

calculation, gives rise to higher errors than in the proposed model. As this decreases the reliability

factor, we would prefer to use the model that gives least number of predicted errors over a time

period, t.The proposed model provides a more reasonable estimation of predicted errors.In near future,

we test a few more models such as the Weibull model and Log Poisson model and compare them to

see which one would yield better results and we will find out an optimized model that is suitable for

all types of software, irrespective of the size of the code, operational environment and the user profile.

International Journal of Research in Computer Applications & Information

Technology, Volume-3, Issue-6, November-December, 2015, www.iaster.com
ISSN

(O) 2347-5099

(P) 2348-0009

49

REFERENCES

[1] K. Y. Cai, D. B. Hu, C. G. Bai, H. Hu, T. Jing, “Does Software Reliability Growth Behavior

Follow a Nonhomogeneous Poisson process”, Information and Software Technology, 50,2007,

pp. 1232–1247.

[2] T. Nara, M. Nakata, A. Ooishi, “Software Reliability Growth Analysis –Application of NHPP

Models and its Evaluation”, Proc. IEEE International ymposium on Software Reliability

Engineering, 1995, pp. 251–255.

[3] Wood, “Predicting Software Reliability”, Computer, 1996, pp. 69–77.

[4] T. Keller, N.F. Schneidwind, “Successful Application of Software Reliability Engineering for

the NASA Space Shuttle”, Proc. IEEE International Symposium on Software Reliability

Engineering (Case Studies), 1997, pp. 71–82.

[5] K.C. Gross, “Software Reliability and System Availability at Sun”, Proc. 11th International

Symposium on Software Reliability Engineering, 2000.

[6] Z. Jelinski, and P. B. Moranda, “Software Reliability Research”, Statistical Computer Performance

Evaluation (Edited by W. Freiberger), Academic Press, New York, 1972, pp. 465-497.

[7] M. L. Shooman, “Probabilistic Models for Software Reliability Prediction”, Proc. the Fault-

Tolerant Computing Symposium, 1972, pp. 211–215.

[8] E. C. Nelson, “A Statistical Basis for Software Reliability Assessment”, TRW-SS-73-03, 1973.

[9] B. Little wood, J. Verrall, “A Bayesian Reliability Growth Model for Computer Software”,

Applied Statistics, 22(3), 1973,pp. 332–346.

[10] J. D. Musa, “A Theory of Software Reliability and Its Applications”, IEEE Transactions on

Software Engineering, SE-1, 1975, pp. 312-327.

[11] L. Goel and K. Okumoto, “Time Dependent Error Detection Rate Model for Software

Reliability and other Performance Measures”, IEEE Transactions on Reliability, R-28(3), 1979,

pp. 206-211.

[12] M. Grottke, and K. S. Trivedi, “On a Method for Mending Time to Failure Distributions”, Proc.

International Conference on Dependable System and Network, Los Alamitos, 2005, pp. 560-569.

[13] M. Xie, G. Y. Hong and C. Wohlin, "Software Reliability Prediction Incorporating Information

from a Similar Project", Journal of Software and Systems, Vol. 49, No. 1, pp.43-48, 1999.

