Unit 1: Algorithm and Program Development
Program Development Lifecycle (PDLC): The steps of PDLC are as follows:

1. Problem Analysis

2. Program Designing

3. Algorithm development and flowcharting
4. Program coding

5. Debugging and compilation

6. Program testing

7. Implementation and documentation

An algorithm is a finite set of steps defining the solution of a particular problem. An algorithm is expressed in pseudo code – something resembling C language or Pascal, but with some statements in English rather than within the programming language

1. A sequential solution of any program that written in human language, called algorithm.

2. Algorithm is first step of the solution process, after the analysis of problem, programmers write the algorithm of that problem.

Pseudo code:
· Input a Number

· Initialize Sum to zero

· While Number is not zero

· Get Remainder by Number Mod 10

· Add Remainder to Sum

· Divide Number by 10

· Print sum

Detailed Algorithm:
Step 1: Input N

Step 2: Sum = 0

Step 3: While (N != 0)

 Rem = N % 10;

 Sum = Sum + Rem;

 N = N / 10;

Step 4: Print Sum

 Flowchart:-

Approaches Towards Programming
Top Down Approach: emphasis is on doing things. Large programs are divided into smaller programs known as functions. It follows procedure oriented programming. C, Pascal follow this approach.

Bottom-up Approach: emphasis is on data. Programs are divided into objects. It follows object oriented approach. C++, Java follows this approach.

Types of Languages

1. High Level Language: High level language is a language which understands by user. This is machine independent language that requires a translator for converting into machine language. Examples are: C, C++, Pascal, Java
2. Machine Language: Machine Language is also known as low level language. This is machine dependent language and don’t require translator. It is in the form of 0 and 1.

3. Assembly Level Language: Assembly level language is intermediate language between

Translators: Translators are system software used to convert one language into another language. The different types of translators are:
1. Assembler: system software used to convert assembly language into machine language.

2. Compiler: System software used to convert high level language into machine language. Compiler is used by C, C++ language.

3. Interpreter: System software used to convert high level language into machine language line by line. Interpreter is used by Java language.

Unit 2 : C Programming Language
C is a general-purpose high level language that was originally developed by Dennis Ritchie for the Unix operating system. It was first implemented on the Digital Eqquipment Corporation PDP-11 computer in 1972.

Facts about C

· C was invented to write an operating system called UNIX.

· C is a successor of B language which was introduced around 1970

· The language was formalized in 1988 by the American National Standard Institue (ANSI).

· By 1973 UNIX OS almost totally written in C.

· Today C is the most widely used System Programming Language.

· Most of the state of the art software have been implemented using C

Why to use C?

C was initially used for system development work, in particular the programs that make-up the operating system. C was adopted as a system development language because it produces code that runs nearly as fast as code written in assembly language. Some examples of the use of C might be:

· Operating Systems

· Language Compilers

· Assemblers

· Text Editors

· Print Spoolers

· Network Drivers

· Modern Programs

· Data Bases

· Language Interpreters

· Utilities

C is a case sensitive programming language. It means in C printf and Printf will have different meanings.

C has a free-form line structure. End of each C statement must be marked with a semicolon.

Multiple statements can be one the same line.

White Spaces (ie tab space and space bar) are ignored.

Statements can continue over multiple lines.

#include <stdio.h>

int main()

{

 /* My first program */

 printf("Hello, World! \n");

 return 0;

}

C Program Compilation

C has a concept of 'data types' which are used to define a variable before its use. The definition of a variable will assign storage for the variable and define the type of data that will be held in the location.

The value of a variable can be changed any time.

Data types in C

C has the following basic built-in datatypes.

· int

· float

· double

· char

Please note that there is not a boolean data type. C does not have the traditional view about logical comparison, but thats another story.

int - data type

int is used to define integer numbers.

	 {

 int Count;

 Count = 5;

 }

float - data type

float is used to define floating point numbers.

	 {

 float Miles;

 Miles = 5.6;

 }

double - data type

double is used to define BIG floating point numbers. It reserves twice the storage for the number. On PCs this is likely to be 8 bytes.

	 {

 double Atoms;

 Atoms = 2500000;

 }

char - data type

char defines characters.

	 {

 char Letter;

 Letter = 'x';

 }

A variable is just a named area of storage that can hold a single value (numeric or character). The C language demands that you declare the name of each variable that you are going to use and its type, or class, before you actually try to do anything with it.

The Programming language C has two main variable types

· Local Variables

· Global Variables

Local Variables

· Local variables scope is confined within the block or function where it is defined. Local variables must always be defined at the top of a block.

· When a local variable is defined - it is not initalised by the system, you must initalise it yourself.

· When execution of the block starts the variable is available, and when the block ends thevariable 'dies'.

Check following example's output

	 main()

 {

 int i=4;

 int j=10;

 i++;

 if (j > 0)

 {

 /* i defined in 'main' can be seen */

 printf("i is %d\n",i);

 }

 if (j > 0)

 {

 /* 'i' is defined and so local to this block */

 int i=100;

 printf("i is %d\n",i);

 }/* 'i' (value 100) dies here */

 printf("i is %d\n",i); /* 'i' (value 5) is now visable.*/

 }

 This will generate following output

 i is 5

 i is 100

 i is 5

Here ++ is called incremental operator and it increase the value of any integer variable by 1. Thus i++ is equivalent to i = i + 1;
You will see -- operator also which is called decremental operator and it idecrease the value of any integer variable by 1. Thus i-- is equivalent to i = i - 1;
Global Variables

Global variable is defined at the top of the program file and it can be visible and modified by any function that may reference it.

Global variables are initialized automatically by the system when you define them!

	Data Type
	Initialser

	int
	0

	char
	'\0'

	float
	0

	pointer
	NULL

If same variable name is being used for global and local variable then local variable takes preference in its scope. But it is not a good practice to use global variables and local variables with the same name.

	 int i=4; /* Global definition */

 main()

 {

 i++; /* Global variable */

 func();

 printf("Value of i = %d -- main function\n", i);

 }

 func()

 {

 int i=10; /* Local definition */

 i++; /* Local variable */

 printf("Value of i = %d -- func() function\n", i);

 }

 This will produce following result

 Value of i = 11 -- func() function

 Value of i = 5 -- main function

i in main function is global and will be incremented to 5. i in func is internal and will be incremented to 11. When control returns to main the internal variable will die and and any reference to i will be to the global.

Storage Classes in C

A storage class defines the scope (visibility) and life time of variables and/or functions within a C Program.

There are following storage classes which can be used in a C Program

· auto

· register

· static

· extern

auto - Storage Class

auto is the default storage class for all local variables.

	
{

 int Count;

 auto int Month;

}

The example above defines two variables with the same storage class. auto can only be used within functions, i.e. local variables.

register - Storage Class

register is used to define local variables that should be stored in a register instead of RAM. This means that the variable has a maximum size equal to the register size (usually one word) and cant have the unary '&' operator applied to it (as it does not have a memory location).

	
{

 register int Miles;

}

Register should only be used for variables that require quick access - such as counters. It should also be noted that defining 'register' goes not mean that the variable will be stored in a register. It means that it MIGHT be stored in a register - depending on hardware and implimentation restrictions.

static - Storage Class

static is the default storage class for global variables. The two variables below (count and road) both have a static storage class.

	
static int Count;

 int Road;

 {

 printf("%d\n", Road);

 }

static variables can be 'seen' within all functions in this source file. At link time, the static variables defined here will not be seen by the object modules that are brought in.

static can also be defined within a function. If this is done the variable is initalised at run time but is not reinitalized when the function is called. This inside a function static variable retains its value during vairous calls.

	 void func(void);

 static count=10; /* Global variable - static is the default */

 main()

 {

 while (count--)

 {

 func();

 }

 }

 void func(void)

 {

 static i = 5;

 i++;

 printf("i is %d and count is %d\n", i, count);

 }

 This will produce following result

 i is 6 and count is 9

 i is 7 and count is 8

 i is 8 and count is 7

 i is 9 and count is 6

 i is 10 and count is 5

 i is 11 and count is 4

 i is 12 and count is 3

 i is 13 and count is 2

 i is 14 and count is 1

 i is 15 and count is 0

NOTE : Here keyword void means function does not return anything and it does not take any parameter. You can memoriese void as nothing. static variables are initialized to 0 automatically.

There is one more very important use for 'static'. Consider this bit of code.

	 char *func(void);

 main()

 {

 char *Text1;

 Text1 = func();

 }

 char *func(void)

 {

 char Text2[10]="martin";

 return(Text2);

 }

Now, 'func' returns a pointer to the memory location where 'text2' starts BUT text2 has a storage class of 'auto' and will disappear when we exit the function and could be overwritten but something else. The answer is to specify

	 static char Text[10]="martin";

The storage assigned to 'text2' will remain reserved for the duration if the program.

extern - Storage Class

extern is used to give a reference of a global variable that is visible to ALL the program files. When you use 'extern' the variable cannot be initalized as all it does is point the variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function which will be used in other files also, then extern will be used in another file to give reference of defined variable or function. Just for understanding extern is used to decalre a global variable or function in another files.

File 1: main.c

	 int count=5;

 main()

 {

 write_extern();

 }

File 2: write.c

	 void write_extern(void);

 extern int count;

 void write_extern(void)

 {

 printf("count is %i\n", count);

 }

Here extern keyword is being used to declare count in another file.

Now compile these two files as follows

	 gcc main.c write.c -o write

This fill produce write program which can be executed to produce result.

Count in 'main.c' will have a value of 5. If main.c changes the value of count - write.c will see the new value

C - Operator Types
	What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9. Here 4 and 5 are called operands and + is called operator. C language supports following type of operators.

· Arithmetic Operators

· Logical (or Relational) Operators

· Bitwise Operators

· Assignment Operators

· Misc Operators

Arithmetic Operators:

There are following arithmetic operators supported by C language:

Assume variable A holds 10 and variable B holds 20 then:

Operator

Description

Example

+

Adds two operands

A + B will give 30

-

Subtracts second operand from the first

A - B will give -10

*

Multiply both operands

A * B will give 200

/

Divide numerator by denumerator

B / A will give 2

%

Modulus Operator and remainder of after an integer division

B % A will give 0

++

Increment operator, increases integer value by one

A++ will give 11

--

Decrement operator, decreases integer value by one

A-- will give 9

Logical (or Relational) Operators:

There are following logical operators supported by C language

Assume variable A holds 10 and variable B holds 20 then:

Show Examples
Operator

Description

Example

==

Checks if the value of two operands is equal or not, if yes then condition becomes true.

(A == B) is not true.

!=

Checks if the value of two operands is equal or not, if values are not equal then condition becomes true.

(A != B) is true.

>

Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.

(A > B) is not true.

<

Checks if the value of left operand is lessthan the value of right operand, if yes then condition becomes true.

(A < B) is true.

>=

Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.

(A >= B) is not true.

<=

Checks if the value of left operand is lessthan or equal to the value of right operand, if yes then condition becomes true.

(A <= B) is true.

&&

Called Logical AND operator. If both the operands are non zero then then condition becomes true.

(A && B) is true.

||

Called Logical OR Operator. If any of the two operands is non zero then then condition becomes true.

(A || B) is true.

!

Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true then Logical NOT operator will make false.

!(A && B) is false.

Bitwise Operators:

Bitwise operator works on bits and perform bit by bit operation.

Assume if A = 60; and B = 13; Now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

There are following Bitwise operators supported by C language

Operator

Description

Example

&

Binary AND Operator copies a bit to the result if it exists in both operands.

(A & B) will give 12 which is 0000 1100

|

Binary OR Operator copies a bit if it exists in eather operand.

(A | B) will give 61 which is 0011 1101

^

Binary XOR Operator copies the bit if it is set in one operand but not both.

(A ^ B) will give 49 which is 0011 0001

~

Binary Ones Complement Operator is unary and has the efect of 'flipping' bits.

(~A) will give -60 which is 1100 0011

<<

Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.

A << 2 will give 240 which is 1111 0000

>>

Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.

A >> 2 will give 15 which is 0000 1111

Assignment Operators:

There are following assignment operators supported by C language:

Operator

Description

Example

=

Simple assignment operator, Assigns values from right side operands to left side operand

C = A + B will assigne value of A + B into C

+=

Add AND assignment operator, It adds right operand to the left operand and assign the result to left operand

C += A is equivalent to C = C + A

-=

Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operand

C -= A is equivalent to C = C - A

*=

Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operand

C *= A is equivalent to C = C * A

/=

Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operand

C /= A is equivalent to C = C / A

%=

Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operand

C %= A is equivalent to C = C % A

<<=

Left shift AND assignment operator

C <<= 2 is same as C = C << 2

>>=

Right shift AND assignment operator

C >>= 2 is same as C = C >> 2

&=

Bitwise AND assignment operator

C &= 2 is same as C = C & 2

^=

bitwise exclusive OR and assignment operator

C ^= 2 is same as C = C ^ 2

|=

bitwise inclusive OR and assignment operator

C |= 2 is same as C = C | 2

Short Notes on L-VALUE and R-VALUE:

x = 1; takes the value on the right (e.g. 1) and puts it in the memory referenced by x. Here x and 1 are known as L-VALUES and R-VALUES respectively L-values can be on either side of the assignment operator where as R-values only appear on the right.

So x is an L-value because it can appear on the left as we've just seen, or on the right like this: y = x; However, constants like 1 are R-values because 1 could appear on the right, but 1 = x; is invalid.

Operators Categories

All the operators we have discussed above can be categorised into following categories:

· Postfix operators, which follow a single operand.

· Unary prefix operators, which precede a single operand.

· Binary operators, which take two operands and perform a variety of arithmetic and logical operations.

· The conditional operator (a ternary operator), which takes three operands and evaluates either the second or third expression, depending on the evaluation of the first expression.

· Assignment operators, which assign a value to a variable.

· The comma operator, which guarantees left-to-right evaluation of comma-separated expressions.

Precedence of C Operators:

Operator precedence determines the grouping of terms in an expression. This affects how an expression is evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher precedenace than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom. Within an expression, higher precedenace operators will be evaluated first.

Category

Operator

Associativity

Postfix

() [] -> . ++ - -

Left to right

Unary

+ - ! ~ ++ - - (type) * & sizeof

Right to left

Multiplicative

* / %

Left to right

Additive

+ -

Left to right

Shift

<< >>

Left to right

Relational

< <= > >=

Left to right

Equality

== !=

Left to right

Bitwise AND

&

Left to right

Bitwise XOR

^

Left to right

Bitwise OR

|

Left to right

Logical AND

&&

Left to right

Logical OR

||

Left to right

Conditional

?:

Right to left

Assignment

= += -= *= /= %= >>= <<= &= ^= |=

Right to left

Comma

,

Left to right

Control Structures in C

C provides two sytles of flow control:

· Branching

· Looping

Branching is deciding what actions to take and looping is deciding how many times to take a certain action.

Branching:

Branching is so called because the program chooses to follow one branch or another.

if statement

This is the most simple form of the branching statements.

It takes an expression in parenthesis and an statement or block of statements. if the expression is true then the statement or block of statements gets executed otherwise these statements are skipped.

NOTE: Expression will be assumed to be true if its evaluated values are non-zero.

if statements take the following form:

	if (expression)

 statement;

or

if (expression)

 {

 Block of statements;

 }

or

if (expression)

 {

 Block of statements;

 }

else

 {

 Block of statements;

 }

or

if (expression)

 {

 Block of statements;

 }

else if(expression)

 {

 Block of statements;

 }

else

 {

 Block of statements;

 }

? : Operator

The ? : operator is just like an if ... else statement except that because it is an operator you can use it within expressions.

? : is a ternary operator in that it takes three values, this is the only ternary operator C has.

? : takes the following form:

	if condition is true ? then X return value : otherwise Y value;

switch statement:

The switch statement is much like a nested if .. else statement. Its mostly a matter of preference which you use, switch statement can be slightly more efficient and easier to read.

	switch(expression)

 {

 case constant-expression1:
statements1;

 [case constant-expression2:
statements2;]

 [case constant-expression3:
statements3;]

 [default : statements4;]

 }

Using break keyword:

If a condition is met in switch case then execution continues on into the next case clause also if it is not explicitly specified that the execution should exit the switch statement. This is achieved by using break keyword.

What is default condition:

If none of the listed conditions is met then default condition executed.

Looping

Loops provide a way to repeat commands and control how many times they are repeated. C provides a number of looping way.

while loop

The most basic loop in C is the while loop.A while statement is like a repeating if statement. Like an If statement, if the test condition is true: the statments get executed. The difference is that after the statements have been executed, the test condition is checked again. If it is still true the statements get executed again.This cycle repeats until the test condition evaluates to false.

Basic syntax of while loop is as follows:

	while (expression)

{

 Single statement

 or

 Block of statements;

}

for loop

for loop is similar to while, it's just written differently. for statements are often used to proccess lists such a range of numbers:

Basic syntax of for loop is as follows:

	for(expression1; expression2; expression3)

{

 Single statement

 or

 Block of statements;

}

In the above syntax:

· expression1 - Initialisese variables.

· expression2 - Condtional expression, as long as this condition is true, loop will keep executing.

· expression3 - expression3 is the modifier which may be simple increment of a variable.

do...while loop

do ... while is just like a while loop except that the test condition is checked at the end of the loop rather than the start. This has the effect that the content of the loop are always executed at least once.

Basic syntax of do...while loop is as follows:

	do

{

 Single statement

 or

 Block of statements;

}while(expression);

break and continue statements

C provides two commands to control how we loop:

· break -- exit form loop or switch.

· continue -- skip 1 iteration of loop.

You already have seen example of using break statement. Here is an example showing usage of continue statement.

	#include

main()

{

 int i;

 int j = 10;

 for(i = 0; i <= j; i ++)

 {

 if(i == 5)

 {

 continue;

 }

 printf("Hello %d\n", i);

 }

}

This will produce following output:

	Hello 0

Hello 1

Hello 2

Hello 3

Hello 4

Hello 6

Hello 7

Hello 8

Hello 9

Hello 10

C Input Output Function
	Input : In any programming language input means to feed some data into program. This can be given in the form of file or from command line. C programming language provides a set of built-in functions to read given input and feed it to the program as per requirement.

Output : In any programming language output means to display some data on screen, printer or in any file. C programming language provides a set of built-in functions to output required data.

Here we will discuss only one input function and one output function just to understand the meaning of input and output. Rest of the functions are given into C - Built-in Functions
printf() function

Try following program to understand printf() function.

#include <stdio.h>

main()

{

 int dec = 5;

 char str[] = "abc";

 char ch = 's';

 float pi = 3.14;

 printf("%d %s %f %c\n", dec, str, pi, ch);

}

The output of the above would be:

 5 abc 3.140000 c

Here %d is being used to print an integer, %s is being usedto print a string, %f is being used to print a float and %c is being used to print a character.

scanf() function

This is the function which can be used to to read an input from the command line.

Try following program to understand scanf() function.

#include <stdio.h>

main()

{

 int x;

 int args;

 printf("Enter an integer: ");

 if ((args = scanf("%d", &x)) == 0) {

 printf("Error: not an integer\n");

 } else {

 printf("Read in %d\n", x);

 }

}

Here %d is being used to read an integer value and we are passing &x to store the vale read input. Here &indicates the address of variavle x.

This program will prompt you to enter a value. Whatever value you will enter at command prompt that will be output at the screen using printf() function. If you eneter a non-integer value then it will display an error message.

Enter an integer: 20

Read in 20

