Unit-1
Fundamentals of operating system
Introduction to operating system.
An operating system act as an intermediary between the user of a computer and computer hardware. The purpose of an operating system is to provide an environment in which a user can execute programs in a convenient and efficient manner.
An operating system is a software that manages the computer hardware. The hardware must provide appropriate mechanisms to ensure the correct operation of the computer system and to prevent user programs from interfering with the proper operation of the system.

Definition of Operating System:

· An Operating system is a program that controls the execution of application programs and acts as an interface between the user of a computer and the computer hardware.

· A more common definition is that the operating system is the one program running at all times on the computer (usually called the kernel), with all else being applications programs.
· An Operating system is concerned with the allocation of resources and services, such as memory, processors, devices and information. The Operating System correspondingly includes programs to manage these resources, such as a traffic controller, a scheduler, memory management module, I/O programs, and a file system.

Functions of Operating System

Operating system performs three functions:
1. Convenience: An OS makes a computer more convenient to use.
2. Efficiency: An OS allows the computer system resources to be used in an efficient manner.
3. Ability to Evolve: An OS should be constructed in such a way as to permit the effective development, testing and introduction of new system functions without at the same time interfering with service.
Operating System as User Interface

Every general purpose computer consists of the hardware, operating system, system programs, application programs. The hardware consists of memory, CPU, ALU, I/O devices, peripheral device and storage device. System program consists of compilers, loaders, editors, OS etc. The application program consists of business program, database program.
The fig. 1.1 shows the conceptual view of a computer system

[image:]

Fig 1.1 Conceptual view of a computer system

· Every computer must have an operating system to run other programs. The operating system and coordinates the use of the hardware among the various system programs and application program for a various users. It simply provides an environment within which other programs can do useful work.
· The operating system is a set of special programs that run on a computer system that allow it to work properly. It performs basic tasks such as recognizing input from the keyboard, keeping track of files and directories
on the disk, sending output to the display screen and controlling a peripheral devices .

History of Operating System

[image:]Operating systems have been evolving through the years. Following table

shows the history of OS.

	Generation

	Year

	Electronic devices used

	Types of OS and devices

	First

	1945 – 55

	Vacuum tubes

	Plug boards

	Second

	1955 – 1965

	Transistors

	Batch system

	Third

	1965 – 1980

	Integrated Circuit (IC)

	Multiprogramming

	Fourth

	Since 1980

	Large scale integration

	PC

Operating System Services

An operating system provides services to programs and to the users of those

[image:]programs. It provided by one environment for the execution of programs. The services provided by one operating system is difficult than other operating system. Operating system makes the programming task easier. The common service provided by the operating system is listed below.
1. Program execution 2. I/O operation
3. File system manipulation 4. Communications
5. Error detection

1. Program execution: Operating system loads a program into memory and executes the program. The program must be able to end its execution, either normally or abnormally.
2. I/O Operation : I/O means any file or any specific I/O device. Program may require any I/O device while running. So operating system must provide the required I/O.

3. File system manipulation : Program needs to read a file or write a file. The operating system gives the permission to the program for operation on file.
4. Communication : Data transfer between two processes is required for some time. The both processes are on the one computer or on different computer but connected through computer network. Communication may be implemented by two methods:
a. Shared memory b. Message passing.
[image:]5. Error detection : error may occur in CPU, in I/O devices or in the memory hardware. The operating system constantly needs to be aware of possible errors. It should take the appropriate action to ensure correct and consistent computing.
Operating system with multiple users provides following services. 1. Resource Allocation
2. Accounting 3. Protection

A) Resource Allocation :

[image:]If there are more than one user or jobs running at the same time, then

[image:]resources must be allocated to each of them. Operating system manages different types of resources require special allocation code, i.e. main memory, CPU cycles and file storage.
There are some resources which require only general request and release code. For allocating CPU, CPU scheduling algorithms are used for better utilization of CPU. CPU scheduling algorithms are used for better utilization

of CPU. CPU scheduling routines consider the speed of the CPU, number of available registers and other required factors.
B) Accounting :

[image:][image:]Logs of each user must be kept. It is also necessary to keep record of which user how much and what kinds of computer resources. This log is used for accounting purposes.
The accounting data may be used for statistics or for the billing. It also used to improve system efficiency.
C) Protection :

[image:][image:]Protection involves ensuring that all access to system resources is controlled. Security starts with each user having to authenticate to the system, usually by means of a password. External I/O devices must be also protected from invalid access attempts.
In protection, all the access to the resources is controlled. In multiprocess environment, it is possible that, one process to interface with the other, or with the operating system, so protection is required.

Batch System

Some computer systems only did one thing at a time. They had a list of the

[image:]computer system may be dedicated to a single program until its completion, or they may be dynamically reassigned among a collection of active programs in different stages of execution.
[image:]Batch operating system is one where programs and data are collected together in a batch before processing starts. A job is predefined sequence of commands, programs and data that are combined in to a single unit called job.
Fig. 2.1 shows the memory layout for a simple batch system. Memory management in batch system is very simple. Memory is usually divided into two areas : Operating system and user program area.

	Operating System

	User Program Area

Resident Portion

Transient Program

Fig Memory Layout for a Simple Batch System

[image:]Scheduling is also simple in batch system. Jobs are processed in the order of

submission i.e first come first served fashion.

[image:][image:]When job completed execution, its memory is releases and the output for the job gets copied into an output spool for later printing.
[image:]Batch system often provides simple forms of file management. Access to file is serial. Batch systems do not require any time critical device management. Batch systems are inconvenient for users because users can not interact with their jobs to fix problems. There may also be long turn around times. Example of this system id generating monthly bank statement.
Advantages o Batch System

[image:]Move much of the work of the operator to the computer.

[image:]Increased performance since it was possible for job to start as soon as the previous job finished.

Disadvantages of Batch System

[image:][image:][image:]Turn around time can be large from user standpoint. Difficult to debug program.
A job could enter an infinite loop.

[image:]A job could corrupt the monitor, thus affecting pending jobs.

[image:]Due to lack of protection scheme, one batch job can affect pending jobs.

Time Sharing Systems

Multi-programmed batched systems provide an environment where the

[image:]various system resources (for example, CPU, memory, peripheral devices) are utilized effectively.
Time sharing, or multitasking, is a logical extension of multiprogramming. Multiple jobs are executed by the CPU switching between them, but the

[image:]switches occur so frequently that the users may interact with each program while it is running.
[image:]An	interactive,	or	hands-on,	computer	system	provides	on-line communication between the user and the system. The user gives instructions to the operating system or to a program directly, and receives an immediate response. Usually, a keyboard is used to provide input, and a display screen (such as a cathode-ray tube (CRT) or monitor) is used to provide output.
[image:]If users are to be able to access both data and code conveniently, an on-line file system must be available. A file is a collection of related information defined by its creator. Batch systems are appropriate for executing large jobs that need little interaction.
[image:]Time-sharing systems were developed to provide interactive use of a computer system at a reasonable cost. A time-shared operating system uses CPU scheduling and multiprogramming to provide each user with a small portion of a time-shared computer. Each user has at least one separate program in memory. A program that is loaded into memory and is executing is commonly referred to as a process. When a process executes, it typically executes for only a short time before it either finishes or needs to perform I/O. I/O may be interactive; that is, output is to a display for the user and input is from a user keyboard. Since interactive I/O typically runs at people speeds, it may take a long time to completed.
A time-shared operating system allows the many users to share the computer simultaneously. Since each action or command in a time-shared system tends to be short, only a little CPU time is needed for each user. As the system switches rapidly from one user to the next, each user is given the impression that she has her own computer, whereas actually one computer is being shared among many users.

[image:]Time-sharing operating systems are even more complex than are multi-

programmed operating systems. As in multiprogramming, several jobs must be kept simultaneously in memory, which requires some form of memory management and protection.

 Multiprogramming

[image:]When two or more programs are in memory at the same time, sharing the processor is referred to the multiprogramming operating system. Multiprogramming assumes a single processor that is being shared. It increases CPU utilization by organizing jobs so that the CPU always has one to execute.
Fig. 2.2 shows the memory layout for a multiprogramming system.

[image:][image:]The operating system keeps several jobs in memory at a time. This set of jobs is a subset of the jobs kept in the job pool. The operating system picks and begins to execute one of the job in the memory.
[image:]Multiprogrammed system provide an environment in which the various system resources are utilized effectively, but they do not provide for user interaction with the computer system.
Jobs entering into the system are kept into the memory. Operating system picks the job and begins to execute one of the job in the memory. Having

[image:]several programs in memory at the same time requires some form of memory management.
Multiprogramming operating system monitors the state of all active programs and system resources. This ensures that the CPU is never idle unless there are no jobs.

Advantages
1. High CPU utilization.

2. It appears that many programs are allotted CPU almost simultaneously.

Disadvantages
1. CPU scheduling is requires.

2. To accommodate many jobs in memory, memory management is required.

Spooling

[image:]Acronym for simultaneous peripheral operations on line. Spooling refers to putting jobs in a buffer, a special area in memory or on a disk where a device can access them when it is ready.
Spooling is useful because device access data that different rates. The buffer provides a waiting station where data can rest while the slower device catches up. Fig 2.3 shows the spooling.

DISK

CARD	PRINTER READER rocess

[image:]Computer can perform I/O in parallel with computation, it becomes possible to have the computer read a deck of cards to a tape, drum or disk and to write out to a tape printer while it was computing. This process is called spooling.

[image:][image:]The most common spooling application is print spooling. In print spooling, documents are loaded into a buffer and then the printer pulls them off the buffer at its own rate.
[image:]Spooling is also used for processing data at remote sites. The CPU sends the data via communications path to a remote printer. Spooling overlaps the I/O of one job with the computation of other jobs.
[image:]One difficulty with simple batch systems is that the computer still needs to read the decks of cards before it can begin to execute the job. This means that the CPU is idle during these relatively slow operations.
Spooling batch systems were the first and are the simplest of the multiprogramming systems.

Advantage of Spooling
1. The spooling operation uses a disk as a very large buffer.

2. Spooling is however capable of overlapping I/O operation for one job with processor operations for another job.

Essential Properties of the Operating System
1. Batch : Jobs with similar needs are batched together and run through the computer as a group by an operator or automatic job sequencer. Performance is increased by attempting to keep CPU and I/O devices busy at all times through buffering , off line operation, spooling and multiprogramming. A Batch system is good for executing large jobs that need little interaction, it can be submitted and picked up latter.
2. Time sharing : Uses CPU s scheduling and multiprogramming to provide economical interactive use of a system. The CPU switches rapidly from one user to another i.e. the CPU is shared between a number of interactive users. Instead of having a job defined by spooled card images, each program reads its next control instructions from the terminal and output is normally printed immediately on the screen.
3. Interactive : User is on line with computer system and interacts with it via an interface. It is typically composed of many short transactions where the result of the next transaction may be unpredictable. Response time needs to be short since the user submits and waits for the result.

4. Real time system : Real time systems are usually dedicated, embedded systems. They typically read from and react to sensor data. The system must guarantee response to events within fixed periods of time to ensure correct performance.
5. Distributed : Distributes computation among several physical processors. The processors do not share memory or a clock. Instead, each processor has its own local memory. They communicate with each other through various communication lines.

Concept of Process

A process is sequential program in execution. A process defines the fundamental unit of computation for the computer. Components of process are :
1. Object Program 2. Data
3. Resources

4. Status of the process execution.

[image:]Object program i.e. code to be executed. Data is used for executing the program. While executing the program, it may require some resources. Last component is used for verifying the status of the process execution. A process can run to completion only when all requested resources have been allocated to the process. Two or more processes could be executing the same program, each using their own data and resources.

Processes and Programs

[image:][image:]Process is a dynamic entity, that is a program in execution. A process is a sequence of information executions. Process exists in a limited span of time. Two or more processes could be executing the same program, each using their own data and resources.
Program is a static entity made up of program statement. Program contains the instructions. A program exists at single place in space and continues to exist. A program does not perform the action by itself.

Process State

[image:]When process executes, it changes state. Process state is defined as the current activity of the process. Fig. 3.1 shows the general form of the process state transition diagram. Process state contains five states. Each process is in one of the states. The states are listed below.
1. New 2. Ready
3. Running 4. Waiting
5. Terminated(exist)

1. New : A process that just been created.

2. Ready : Ready processes are waiting to have the processor allocated to them by the operating system so that they can run.
3. Running : The process that is currently being executed. A running process possesses all the resources needed for its execution, including the processor.
4. Waiting : A process that can not execute until some event occurs such as the completion of an I/O operation. The running process may become suspended by invoking an I/O module.
5. Terminated : A process that has been released from the pool of executable processes by the operating system.

Fig - Diagram for Process State

[image:]Whenever processes changes state, the operating system reacts by placing the process PCB in the list that corresponds to its new state. Only one

process can be running on any processor at any instant and many processes may be ready and waiting state.

Suspended Processes Characteristics of suspend process
1. Suspended process is not immediately available for execution. 2. The process may or may not be waiting on an event.
3. For preventing the execution, process is suspend by OS, parent process, process itself and an agent.
[image:]4. Process may not be removed from the suspended state until the agent orders the removal.
Swapping is used to move all of a process from main memory to disk. When all the process by putting it in the suspended state and transferring it to disk.

Reasons for process suspension 1. Swapping
2. Timing

3. Interactive user request 4. Parent process request

Swapping : OS needs to release required main memory to bring in a process that is ready to execute.

Timing : Process may be suspended while waiting for the next time interval.

Interactive user request : Process may be suspended for debugging purpose by user.

Parent process request : To modify the suspended process or to coordinate the activity of various descendants.

Process Control Block (PCB)

[image:]Each process contains the process control block (PCB). PCB is the data structure used by the operating system. Operating system groups all

information that needs about particular process. Fig. 3.2 shows the process control block.

	

Pointer

	Process State

	Process Number

	Program Counter

	CPU registers

	Memory Allocation

	Event Information

	List of open files

	

Fig.- Process Control Block

1. Pointer : Pointer points to another process control block. Pointer is used for maintaining the scheduling list.
2. Process State : Process state may be new, ready, running, waiting and so on. 3. Program Counter : It indicates the address of the next instruction to be
executed for this process.

4. Event information : For a process in the blocked state this field contains information concerning the event for which the process is waiting.
5. CPU register : It indicates general purpose register, stack pointers, index registers and accumulators etc. number of register and type of register totally depends upon the computer architecture.
6. Memory Management Information : This information may include the value of base and limit register. This information is useful for deallocating the memory when the process terminates.
[image:]7. Accounting Information : This information includes the amount of CPU and real time used, time limits, job or process numbers, account numbers etc. Process control block also includes the information about CPU scheduling, I/O resource management, file management information, priority and so on.

[image:]The PCB simply serves as the repository for any information that may vary from process to process.
When a process is created, hardware registers and flags are set to the values provided by the loader or linker. Whenever that process is suspended, the contents of the processor register are usually saved on the stack and the pointer to the related stack frame is stored in the PCB. In this way, the hardware state can be restored when the process is scheduled to run again.

Process Management / Process Scheduling

[image:]Multiprogramming operating system allows more than one process to be loaded into the executable memory at a time and for the loaded process to share the CPU using time multiplexing.
The scheduling mechanism is the part of the process manager that handles the removal of the running process from the CPU and the selection of another process on the basis of particular strategy.

Scheduling Queues

[image:][image:]When the process enters into the system, they are put into a job queue. This queue consists of all processes in the system. The operating system also has other queues.
Device queue is a queue for which a list of processes waiting for a particular I/O device. Each device has its own device queue. Fig. 3.3 shows the queuing diagram of process scheduling. In the fig 3.3, queue is represented

by rectangular box. The circles represent the resources that serve the queues. The arrows indicate the flow of processes in the system.

Fig.- Queuing Diagram

[image:]Queues are of two types : ready queue and set of device queues. A newly arrived process is put in the ready queue. Processes are waiting in ready queue for allocating the CPU. Once the CPU is assigned to the process, then process will execute. While executing the process, one of the several events could occur.
1. The process could issue an I/O request and then place in an I/O queue.
2. The process could create new sub process and waits for its termination.
3. The process could be removed forcibly from the CPU, as a result of interrupt and put back in the ready queue.

Two State Process Model

[image:]Process may be in one of two states : a) Running
b) Not Running

[image:]when new process is created by OS, that process enters into the system in the running state.

[image:]Processes that are not running are kept in queue, waiting their turn to execute. Each entry in the queue is a printer to a particular process. Queue is implemented by using linked list. Use of dispatcher is as follows. When a process interrupted, that process is transferred in the waiting queue. If the process has completed or aborted, the process is discarded. In either case, the dispatcher then select a process from the queue to execute.

Schedules

[image:]Schedulers are of three types. 1. Long Term Scheduler
2. Short Term Scheduler

3. Medium Term Scheduler

[image:]Long Term Scheduler

It is also called job scheduler. Long term scheduler determines which programs are admitted to the system for processing. Job scheduler selects processes from the queue and loads them into memory for execution. Process loads into the memory for CPU scheduler. The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O bound and processor bound. It also controls the degree of multiprogramming. If the degree of multiprogramming is stable, then the average rate of process creation must be equal to the average departure rate of processes leaving the system.

[image:]On same systems, the long term scheduler may be absent or minimal. Time-sharing operating systems have no long term scheduler. When process changes the state from new to ready, then there is a long term scheduler.

Short Term Scheduler

[image:]It is also called CPU scheduler. Main objective is increasing system performance in accordance with the chosen set of criteria. It is the change of ready state to running state of the process. CPU scheduler selects from among the processes that are ready to execute and allocates the CPU to one of them.

[image:]Short term scheduler also known as dispatcher, execute most frequently and makes the fine grained decision of which process to execute next. Short term scheduler is faster than long tern scheduler.

Medium Term Scheduler

[image:]Medium term scheduling is part of the swapping function. It removes the processes from the memory. It reduces the degree of multiprogramming. The medium term scheduler is in charge of handling the swapped out-processes.

Medium term scheduler is shown in the Fig. 3.4

Fig 3.4 Queueing diagram with medium term scheduler

Running process may become suspended by making an I/O request. Suspended processes cannot make any progress towards completion. In this condition, to remove the process from memory and make space for other process. Suspended process is move to the secondary storage is called swapping, and the process is said to be swapped out or rolled out. Swapping may be necessary to improve the process mix.

Comparison between Scheduler

	Sr. No.

	Long Term

	Short Term

	Medium Term

	1

	It is job scheduler

	It is CPU Scheduler

	It is swapping

	2

	Speed is less than short term scheduler

	Speed is very fast

	Speed is in between both

	3

	It controls degree of multiprogramming

	Less	control	over degree of multiprogramming

	Reduce the degree of multiprogramming.

	4

	Absent or minimal in time sharing system.

	Minimal	in	time sharing system.

	Time sharing system use medium term scheduler.

	5

	It select processes from pool and load them into memory for execution.

	It select from among the processes that are ready to execute.

	Process	can	be reintroduced into memory and	its execution can	be continued.

	6

	Process state is (New to Ready)

	Process state is (Ready to Running)

	-

	7

	Select a good process, mix of I/O bound and CPU bound.

	Select a new process for	a	CPU	quite frequently.

	-

[image:]Context Switch

When the scheduler switches the CPU from executing one process to executing another, the context switcher saves the content of all processor registers for the process being removed from the CPU in its process being removed from the CPU in its process descriptor. The context of a process is represented in the process control block of a process. Context switch time is pure overhead. Context switching can significantly affect performance, since modern computers have a lot of general and status registers to be saved.

[image:][image:]Content switch times are highly dependent on hardware support. Context switch requires (n + m) bXK time units to save the state of the processor with n general registers, assuming b store operations are required to save register and each store instruction requires K time units. Some hardware systems employ two or more sets of processor registers to reduce the amount of context switching time.
When the process is switched the information stored is : 1. Program Counter
2. Scheduling Information

3. Base and limit register value 4. Currently used register
5. Changed State 6. I/O State
7. Accounting

[image:]Operation on Processes

Several operations are possible on the process. Process must be created and deleted dynamically. Operating system must provide the environment for the process operation. We discuss the two main operations on processes.
1. Create a process

2. Terminate a process

1)Create Process

[image:]Operating system creates a new process with the specified or default attributes and identifier. A process may create several new subprocesses. Syntax for creating new process is :
CREATE (processed, attributes)

[image:]Two names are used in the process they are parent process and child process. Parent process is a creating process. Child process is created by the parent process. Child process may create another subprocess. So it forms a tree of processes. When operating system issues a CREATE system call, it obtains a new process control block from the pool of free memory, fills the fields with provided and default parameters, and insert the PCB into the ready list. Thus it makes the specified process eligible to run the process.

[image:][image:]When a process is created, it requires some parameters. These are priority, level of privilege, requirement of memory, access right, memory protection information etc. Process will need certain resources, such as CPU time, memory, files and I/O devices to complete the operation. When process creates a subprocess, that subprocess may obtain its resources directly from the operating system. Otherwise it uses the resources of parent process. When a process creates a new process, two possibilities exist in terms of execution.
1. The parent continues to execute concurrently with its children.

[image:]2. The parent waits until some or all of its children have terminated. For address space, two possibilities occur:
1. The child process is a duplicate of the parent process. 2. The child process has a program loaded into it.

2) Terminate a Process

[image:]DELETE system call is used for terminating a process. A process may delete itself or by another process. A process can cause the termination of another process via an appropriate system call. The operating system reacts by reclaiming all resources allocated to the specified process, closing files opened by or for the process. PCB is also removed from its place of residence in the list and is returned to the free pool. The DELETE service is normally invoked as a part of orderly program termination.

[image:]Following are the resources for terminating the child process by parent process.
1. The task given to the child is no longer required.

2. Child has exceeded its usage of some of the resources that it has been allocated.
3. Operating system does not allow a child to continue if its parent terminates.

Co-operating Processes

[image:]Co-operating process is a process that can affect or be affected by the other processes while executing. If suppose any process is sharing data with other processes, then it is called co-operating process. Benefit of the co-operating processes are :
1. Sharing of information

2. Increases computation speed 3. Modularity
4. Convenience

[image:]Co-operating processes share the information : Such as a file, memory etc. System must provide an environment to allow concurrent access to these types of resources. Computation speed will increase if the computer has multiple processing elements are connected together. System is constructed in a modular fashion. System function is divided into number of modules.

Process 1 Printf(“abc”)

Process 2 Printf(“CBA”)

CBAabc	abCcBA	abcCBA

[image:]Behavior of co-operating processes is nondeterministic i.e. it depends on relative execution sequence and cannot be predicted a priori. Co-operating processes are also Reproducible. For example, suppose one process writes ―ABC‖, another writes ―CBA‖ can get different outputs, cannot tell what comes from which. Which process output first ―C‖ in ―ABCCBA‖. The subtle state sharing that occurs here via the terminal. Not just anything can happen, though. For example, ―AABBCC‖ cannot occur.

Introduction of Thread

A thread is a flow of execution through the process code, with its own

[image:]program counter, system registers and stack. Threads are a popular way to improve application performance through parallelism. A thread is sometimes called a light weight process.
Threads represent a software approach to improving performance of operating system by reducing the over head thread is equivalent to a classical process. Each thread belongs to exactly one process and no thread

[image:]can exist outside a process. Each thread represents a separate flow of control.
Fig. 4.1shows the single and multithreaded process.

[image:]Threads have been successfully used in implementing network servers. They also provide a suitable foundation for parallel execution of applications on shared memory multiprocessors.

Types of Thread

Threads is implemented in two ways : 1. User Level
2. Kernel Level

User Level Thread

[image:]In a user thread, all of the work of thread management is done by the

[image:]application and the kernel is not aware of the existence of threads. The thread library contains code for creating and destroying threads, for passing message and data between threads, for scheduling thread execution and for saving and restoring thread contexts. The application begins with a single thread and begins running in that thread.
Fig. 4.2 shows the user level thread.

User Level Thread

	
	

	User Space

	
	
	

	
	
	
	Thread Library

	
	

	

Kernel Space

	

P

User level threads are generally fast to create and manage.

Advantage of user level thread over Kernel level thread :

1. Thread switching does not require Kernel mode privileges. 2. User level thread can run on any operating system.
3. Scheduling can be application specific.

4. User level threads are fast to create and manage.

Disadvantages of user level thread :

1. In a typical operating system, most system calls are blocking.

2. Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

[image:]In Kernel level thread, thread management done by the Kernel. There is no

thread management code in the application area. Kernel threads are

supported directly by the operating system. Any application can be programmed to be multithreaded. All of the threads within an application are supported within a single process. The Kernel maintains context information for the process as a whole and for individuals threads within the process.

[image:]Scheduling by the Kernel is done on a thread basis. The Kernel performs

thread creation, scheduling and management in Kernel space. Kernel threads are generally slower to create and manage than the user threads.

Advantages of Kernel level thread:

1. Kernel can simultaneously schedule multiple threads from the same process on multiple process.

2. If one thread in a process is blocked, the Kernel can schedule another thread of the same process.

3. Kernel routines themselves can multithreaded.

Disadvantages:

1. Kernel threads are generally slower to create and manage than the user threads.

2. Transfer of control from one thread to another within same process requires a mode switch to the Kernel.

Advantages of Thread

1. Thread minimize context switching time.

2. Use of threads provides concurrency within a process. 3. Efficient communication.
4. Economy- It is more economical to create and context switch threads. 5. Utilization of multiprocessor architectures –
The benefits of multithreading can be greatly	increased in a multiprocessor architecture.

Multithreading Models

[image:]Some operating system provide a combined user level thread and Kernel

level thread facility. Solaris is a good example of this combined approach. In a combined system, multiple threads within the same application can run in parallel on multiple processors and a blocking system call need not block the entire process.

[image:]Multithreading models are three types:

1. Many to many relationship.

2. Many to one relationship.

3. One to one relationship.

Many to Many Model

[image:]In this model, many user level threads multiplexes to the Kernel thread of

smaller or equal numbers. The number of Kernel threads may be specific to either a particular application or a particular machine.

[image:]Fig. shows the many to many model. In this model, developers can

create as many user threads as necessary and the corresponding Kernel threads can run in parallels on a multiprocessor.

User Level Thread

Kernel

Thread K
K	K

Many to One Model

[image:]Many to one model maps many user level threads to one Kernel level thread.

Thread management is done in user space. When thread makes a blocking

system call, the entire process will be blocks. Only one thread can access the Kernel at a time,	so multiple threads are unable to run in parallel on multiprocessors.

[image:]Fig below shows the many to one model.

User Level Thread

Kernel Thread

K

[image:]If the user level thread libraries are implemented in the operating system, that system does not support Kernel threads use the many to one relationship modes.

One to One Model

[image:]There is one to one relationship of user level thread to the kernel level

thread. Fig. below shows one to one relationship model. This model provides more concurrency than the many to one model.

User Level Thread

[image:][image:]Kernel Thread

K	K	K

[image:]It also another thread to run when a thread makes a blocking system call. It

support multiple thread to execute in parallel on microprocessors. Disadvantage of this model is that creating user thread requires the corresponding Kernel thread. OS/2, windows NT and windows 2000 use one to one relationship model.

Difference between User Level & Kernel Level Thread

	Sr. No

	User Level Threads

	Kernel Level Thread

	1

	User level thread are faster to create and manage.

	Kernel level thread are slower to create and manage.

	2

	Implemented by a thread library at

the user level.

	Operating system support directly to

Kernel threads.

	3

	User level thread can run on any operating system.

	Kernel level threads are specific to the operating system.

	4

	Support provided at the user level called user level thread.

	Support may be provided by kernel is called Kernel level threads.

	5

	Multithread application cannot take

advantage of multiprocessing.

	Kernel routines themselves can be

multithreaded.

Difference between Process and Thread

	Sr. No

	Process

	Thread

	1

	Process is called heavy weight process.

	Thread is called light weight process.

	2

	Process switching needs interface with

operating system.

	Thread switching does not need

to call a operating system and

cause an interrupt to the Kernel.

	3

	In multiple process implementation each process executes the same code but has its own memory and file resources.

	All threads can share same set of open files, child processes.

	4

	If one server process is blocked no other server process can execute until the first process unblocked.

	While one server thread is blocked and waiting, second thread in the same task could run.

	5

	Multiple redundant process uses more resources than multiple threaded.

	Multiple threaded process uses fewer resources than multiple redundant process.

	6

	In multiple process each process operates independently of the others.

	One thread can read, write or even completely wipe out another threads stack.

Threading Issues

[image:]System calls fork and exec is discussed here. In a multithreaded program

environment, fork and exec system calls is changed. Unix system have two version of fork system calls. One call duplicates all threads and another that duplicates only the thread that invoke the fork system call. Whether to use one or two version of fork system call totally depends upon the application. Duplicating all threads is unnecessary, if exec is called immediately after fork system call.

[image:]Thread cancellation is a process of thread terminates before its completion of

task. For example, in multiple thread environment, thread concurrently searching through a database. If any one thread returns the result, the remaining thread might be cancelled.

[image:]Thread cancellation is of two types.

1. Asynchronous cancellation

2. Synchronous cancellation

[image:]In asynchronous cancellation, one thread immediately terminates the target

thread. Deferred cancellation periodically check for terminate by target thread. It also allow the target thread to terminate itself in an orderly fashion. Some resources are allocated to the thread. If we cancel the thread, which update the data with other thread. This problem may face by asynchronous cancellation system wide resource are not free if threads cancelled asynchronously. Most of the operating system allow a process or thread to be cancelled asynchronously.

image4.png
512M

operating system

job 1

job 2

job 3

job 4

image5.png

image6.png
admitted interrupt exit

terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

image7.png

image8.png

image9.png
e
»| ready queue
/0 1/0 queue [— /O request
time slice
expired
child fork a
execltes child
interrupt wait for an
\\occurs interrupt

image10.png
swap in

partially executed swap out
swapped-out processes

—— 5 readyqueue

/0

CPU

1/0 waiting
queues

» eNcC

image11.png
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
—

thread —> ;

— thread

single-threaded process

multithreaded process

image12.png

image13.png

image14.png

image15.png

image1.emf

image2.png

image3.png

