Unit-3
Memory management
Basic Hardware
· It should be noted that from the memory chips point of view, all memory accesses are equivalent. The memory hardware doesn't know what a particular part of memory is being used for, nor does it care. This is almost true of the OS as well, although not entirely.
· The CPU can only access its registers and main memory. It cannot, for example, make direct access to the hard drive, so any data stored there must first be transferred into the main memory chips before the CPU can work with it. (Device drivers communicate with their hardware via interrupts and "memory" accesses, sending short instructions for example to transfer data from the hard drive to a specified location in main memory. The disk controller monitors the bus for such instructions, transfers the data, and then notifies the CPU that the data is there with another interrupt, but the CPU never gets direct access to the disk.)
· Memory accesses to registers are very fast, generally one clock tick, and a CPU may be able to execute more than one machine instruction per clock tick.
· Memory accesses to main memory are comparatively slow, and may take a number of clock ticks to complete. This would require intolerable waiting by the CPU if it were not for an intermediary fast memory cache built into most modern CPUs. The basic idea of the cache is to transfer chunks of memory at a time from the main memory to the cache, and then to access individual memory locations one at a time from the cache.
· User processes must be restricted so that they only access memory locations that "belong" to that particular process. This is usually implemented using a base register and a limit register for each process, as shown in Figures 8.1 and 8.2 below. Every memory access made by a user process is checked against these two registers, and if a memory access is attempted outside the valid range, then a fatal error is generated. The OS obviously has access to all existing memory locations, as this is necessary to swap users' code and data in and out of memory. It should also be obvious that changing the contents of the base and limit registers is a privileged activity, allowed only to the OS kernel.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_01_LogicalAddressSpace.jpg]
Figure - A base and a limit register define a logical addresss space
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_02_HardwareAddressProtection.jpg]
Figure - Hardware address protection with base and limit registers
Address Binding
· User programs typically refer to memory addresses with symbolic names such as "i", "count", and "averageTemperature". These symbolic names must be mapped or bound to physical memory addresses, which typically occurs in several stages:
· Compile Time - If it is known at compile time where a program will reside in physical memory, then absolute code can be generated by the compiler, containing actual physical addresses. However if the load address changes at some later time, then the program will have to be recompiled. DOS .COM programs use compile time binding.
· Load Time - If the location at which a program will be loaded is not known at compile time, then the compiler must generate relocatable code, which references addresses relative to the start of the program. If that starting address changes, then the program must be reloaded but not recompiled.
· Execution Time - If a program can be moved around in memory during the course of its execution, then binding must be delayed until execution time. This requires special hardware, and is the method implemented by most modern OSes.
· Figure 8.3 shows the various stages of the binding processes and the units involved in each stage:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_03_MultistepProcessing.jpg]
Figure - Multistep processing of a user program
Logical Versus Physical Address Space
· The address generated by the CPU is a logical address, whereas the address actually seen by the memory hardware is a physical address.
· Addresses bound at compile time or load time have identical logical and physical addresses.
· Addresses created at execution time, however, have different logical and physical addresses.
· In this case the logical address is also known as a virtual address, and the two terms are used interchangeably by our text.
· The set of all logical addresses used by a program composes the logical address space, and the set of all corresponding physical addresses composes the physical address space.
· The run time mapping of logical to physical addresses is handled by the memory-management unit, MMU.
· The MMU can take on many forms. One of the simplest is a modification of the base-register scheme described earlier.
· The base register is now termed a relocation register, whose value is added to every memory request at the hardware level.
· Note that user programs never see physical addresses. User programs work entirely in logical address space, and any memory references or manipulations are done using purely logical addresses. Only when the address gets sent to the physical memory chips is the physical memory address generated.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_04_DynamicRelocation.jpg]
Figure - Dynamic relocation using a relocation register

Dynamic Loading
· Rather than loading an entire program into memory at once, dynamic loading loads up each routine as it is called. The advantage is that unused routines need never be loaded, reducing total memory usage and generating faster program startup times. The downside is the added complexity and overhead of checking to see if a routine is loaded every time it is called and then then loading it up if it is not already loaded.
Dynamic Linking and Shared Libraries
· With static linking library modules get fully included in executable modules, wasting both disk space and main memory usage, because every program that included a certain routine from the library would have to have their own copy of that routine linked into their executable code.
· With dynamic linking, however, only a stub is linked into the executable module, containing references to the actual library module linked in at run time.
· This method saves disk space, because the library routines do not need to be fully included in the executable modules, only the stubs.
· We will also learn that if the code section of the library routines is reentrant, (meaning it does not modify the code while it runs, making it safe to re-enter it), then main memory can be saved by loading only one copy of dynamically linked routines into memory and sharing the code amongst all processes that are concurrently using it. (Each process would have their own copy of the data section of the routines, but that may be small relative to the code segments.) Obviously the OS must manage shared routines in memory.
· An added benefit of dynamically linked libraries (DLLs, also known as shared libraries or shared objects on UNIX systems) involves easy upgrades and updates. When a program uses a routine from a standard library and the routine changes, then the program must be re-built (re-linked) in order to incorporate the changes. However if DLLs are used, then as long as the stub doesn't change, the program can be updated merely by loading new versions of the DLLs onto the system. Version information is maintained in both the program and the DLLs, so that a program can specify a particular version of the DLL if necessary.
· In practice, the first time a program calls a DLL routine, the stub will recognize the fact and will replace itself with the actual routine from the DLL library. Further calls to the same routine will access the routine directly and not incur the overhead of the stub access.
·
Swapping
· A process must be loaded into memory in order to execute.
· If there is not enough memory available to keep all running processes in memory at the same time, then some processes who are not currently using the CPU may have their memory swapped out to a fast local disk called the backing store.
Standard Swapping
· If compile-time or load-time address binding is used, then processes must be swapped back into the same memory location from which they were swapped out. If execution time binding is used, then the processes can be swapped back into any available location.
· Swapping is a very slow process compared to other operations. For example, if a user process occupied 10 MB and the transfer rate for the backing store were 40 MB per second, then it would take 1/4 second (250 milliseconds) just to do the data transfer. Adding in a latency lag of 8 milliseconds and ignoring head seek time for the moment, and further recognizing that swapping involves moving old data out as well as new data in, the overall transfer time required for this swap is 512 milliseconds, or over half a second. For efficient processor scheduling the CPU time slice should be significantly longer than this lost transfer time.
· To reduce swapping transfer overhead, it is desired to transfer as little information as possible, which requires that the system know how much memory a process is using, as opposed to how much it might use. Programmers can help with this by freeing up dynamic memory that they are no longer using.
· It is important to swap processes out of memory only when they are idle, or more to the point, only when there are no pending I/O operations. (Otherwise the pending I/O operation could write into the wrong process's memory space.) The solution is to either swap only totally idle processes, or do I/O operations only into and out of OS buffers, which are then transferred to or from process's main memory as a second step.
· Most modern OSes no longer use swapping, because it is too slow and there are faster alternatives available. (e.g. Paging.) However some UNIX systems will still invoke swapping if the system gets extremely full, and then discontinue swapping when the load reduces again. Windows 3.1 would use a modified version of swapping that was somewhat controlled by the user, swapping process's out if necessary and then only swapping them back in when the user focused on that particular window.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_05_ProcessSwapping.jpg]
Figure - Swapping of two processes using a disk as a backing store
Contiguous Memory Allocation
· One approach to memory management is to load each process into a contiguous space. The operating system is allocated space first, usually at either low or high memory locations, and then the remaining available memory is allocated to processes as needed. (The OS is usually loaded low, because that is where the interrupt vectors are located, but on older systems part of the OS was loaded high to make more room in low memory (within the 640K barrier) for user processes.)
Memory Protection (was Memory Mapping and Protection)
· The system shown in Figure 8.6 below allows protection against user programs accessing areas that they should not, allows programs to be relocated to different memory starting addresses as needed, and allows the memory space devoted to the OS to grow or shrink dynamically as needs change.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_06_HardwareSupport.jpg]
Figure - Hardware support for relocation and limit registers
Memory Allocation
· One method of allocating contiguous memory is to divide all available memory into equal sized partitions, and to assign each process to their own partition. This restricts both the number of simultaneous processes and the maximum size of each process, and is no longer used.
· An alternate approach is to keep a list of unused (free) memory blocks (holes), and to find a hole of a suitable size whenever a process needs to be loaded into memory. There are many different strategies for finding the "best" allocation of memory to processes, including the three most commonly discussed:
1. First fit - Search the list of holes until one is found that is big enough to satisfy the request, and assign a portion of that hole to that process. Whatever fraction of the hole not needed by the request is left on the free list as a smaller hole. Subsequent requests may start looking either from the beginning of the list or from the point at which this search ended.
2. Best fit - Allocate the smallest hole that is big enough to satisfy the request. This saves large holes for other process requests that may need them later, but the resulting unused portions of holes may be too small to be of any use, and will therefore be wasted. Keeping the free list sorted can speed up the process of finding the right hole.
3. Worst fit - Allocate the largest hole available, thereby increasing the likelihood that the remaining portion will be usable for satisfying future requests.
· Simulations show that either first or best fit are better than worst fit in terms of both time and storage utilization. First and best fits are about equal in terms of storage utilization, but first fit is faster.
Fragmentation
· All the memory allocation strategies suffer from external fragmentation, though first and best fits experience the problems more so than worst fit. External fragmentation means that the available memory is broken up into lots of little pieces, none of which is big enough to satisfy the next memory requirement, although the sum total could.
· The amount of memory lost to fragmentation may vary with algorithm, usage patterns, and some design decisions such as which end of a hole to allocate and which end to save on the free list.
· Statistical analysis of first fit, for example, shows that for N blocks of allocated memory, another 0.5 N will be lost to fragmentation.
· Internal fragmentation also occurs, with all memory allocation strategies. This is caused by the fact that memory is allocated in blocks of a fixed size, whereas the actual memory needed will rarely be that exact size. For a random distribution of memory requests, on the average 1/2 block will be wasted per memory request, because on the average the last allocated block will be only half full.
· Note that the same effect happens with hard drives, and that modern hardware gives us increasingly larger drives and memory at the expense of ever larger block sizes, which translates to more memory lost to internal fragmentation.
· Some systems use variable size blocks to minimize losses due to internal fragmentation.
· If the programs in memory are relocatable, (using execution-time address binding), then the external fragmentation problem can be reduced via compaction, i.e. moving all processes down to one end of physical memory. This only involves updating the relocation register for each process, as all internal work is done using logical addresses.
· Another solution as we will see in upcoming sections is to allow processes to use non-contiguous blocks of physical memory, with a separate relocation register for each block.
Segmentation
Basic Method
· Most users (programmers) do not think of their programs as existing in one continuous linear address space.
· Rather they tend to think of their memory in multiple segments, each dedicated to a particular use, such as code, data, the stack, the heap, etc.
· Memory segmentation supports this view by providing addresses with a segment number (mapped to a segment base address) and an offset from the beginning of that segment.
· For example, a C compiler might generate 5 segments for the user code, library code, global (static) variables, the stack, and the heap, as shown in Figure 8.7:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_07_UsersView.jpg]
Figure Programmer's view of a program.

Segmentation Hardware
· A segment table maps segment-offset addresses to physical addresses, and simultaneously checks for invalid addresses, using a system similar to the page tables and relocation base registers discussed previously. (Note that at this point in the discussion of segmentation, each segment is kept in contiguous memory and may be of different sizes, but that segmentation can also be combined with paging as we shall see shortly.)
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_08_SegmentationHardware.jpg]
Figure Segmentation hardware
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_09_Segmentation.jpg]
Figure Example of segmentation
Paging
· Paging is a memory management scheme that allows processes physical memory to be discontinuous, and which eliminates problems with fragmentation by allocating memory in equal sized blocks known as pages.
· Paging eliminates most of the problems of the other methods discussed previously, and is the predominant memory management technique used today.
Basic Method
· The basic idea behind paging is to divide physical memory into a number of equal sized blocks called frames, and to divide a programs logical memory space into blocks of the same size called pages.
· Any page (from any process) can be placed into any available frame.
· The page table is used to look up what frame a particular page is stored in at the moment. In the following example, for instance, page 2 of the program's logical memory is currently stored in frame 3 of physical memory:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_10_PagingHardware.jpg]
Figure - Paging hardware
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_11_PagingModel.jpg]
Figure - Paging model of logical and physical memory
· A logical address consists of two parts: A page number in which the address resides, and an offset from the beginning of that page. (The number of bits in the page number limits how many pages a single process can address. The number of bits in the offset determines the maximum size of each page, and should correspond to the system frame size.)
· The page table maps the page number to a frame number, to yield a physical address which also has two parts: The frame number and the offset within that frame. The number of bits in the frame number determines how many frames the system can address, and the number of bits in the offset determines the size of each frame.
· Page numbers, frame numbers, and frame sizes are determined by the architecture, but are typically powers of two, allowing addresses to be split at a certain number of bits. For example, if the logical address size is 2^m and the page size is 2^n, then the high-order m-n bits of a logical address designate the page number and the remaining n bits represent the offset.
· Note also that the number of bits in the page number and the number of bits in the frame number do not have to be identical. The former determines the address range of the logical address space, and the latter relates to the physical address space.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_11A_PageNumberOffset.jpg]
· (DOS used to use an addressing scheme with 16 bit frame numbers and 16-bit offsets, on hardware that only supported 24-bit hardware addresses. The result was a resolution of starting frame addresses finer than the size of a single frame, and multiple frame-offset combinations that mapped to the same physical hardware address.)
· Consider the following micro example, in which a process has 16 bytes of logical memory, mapped in 4 byte pages into 32 bytes of physical memory. (Presumably some other processes would be consuming the remaining 16 bytes of physical memory.)
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_12_PagingExample.jpg]
Figure - Paging example for a 32-byte memory with 4-byte pages
· Note that paging is like having a table of relocation registers, one for each page of the logical memory.
· There is no external fragmentation with paging. All blocks of physical memory are used, and there are no gaps in between and no problems with finding the right sized hole for a particular chunk of memory.
· There is, however, internal fragmentation. Memory is allocated in chunks the size of a page, and on the average, the last page will only be half full, wasting on the average half a page of memory per process. (Possibly more, if processes keep their code and data in separate pages.)
· Larger page sizes waste more memory, but are more efficient in terms of overhead. Modern trends have been to increase page sizes, and some systems even have multiple size pages to try and make the best of both worlds.
· Page table entries (frame numbers) are typically 32 bit numbers, allowing access to 2^32 physical page frames. If those frames are 4 KB in size each, that translates to 16 TB of addressable physical memory. (32 + 12 = 44 bits of physical address space.)
· When a process requests memory (e.g. when its code is loaded in from disk), free frames are allocated from a free-frame list, and inserted into that process's page table.
· Processes are blocked from accessing anyone else's memory because all of their memory requests are mapped through their page table. There is no way for them to generate an address that maps into any other process's memory space.
· The operating system must keep track of each individual process's page table, updating it whenever the process's pages get moved in and out of memory, and applying the correct page table when processing system calls for a particular process. This all increases the overhead involved when swapping processes in and out of the CPU. (The currently active page table must be updated to reflect the process that is currently running.)
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_13_FreeFrames.jpg]
Figure - Free frames (a) before allocation and (b) after allocation
.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_15_ValidBits.jpg]
Figure - Valid (v) or invalid (i) bit in page table
Shared Pages
· Paging systems can make it very easy to share blocks of memory, by simply duplicating page numbers in multiple page frames. This may be done with either code or data.
· If code is reentrant, that means that it does not write to or change the code in any way (it is non self-modifying), and it is therefore safe to re-enter it. More importantly, it means the code can be shared by multiple processes, so long as each has their own copy of the data and registers, including the instruction register.
· In the example given below, three different users are running the editor simultaneously, but the code is only loaded into memory (in the page frames) one time.
· Some systems also implement shared memory in this fashion.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_16_CodeSharing.jpg]
Figure - Sharing of code in a paging environment
Structure of the Page Table
Hierarchical Paging
· Most modern computer systems support logical address spaces of 2^32 to 2^64.
· With a 2^32 address space and 4K (2^12) page sizes, this leave 2^20 entries in the page table. At 4 bytes per entry, this amounts to a 4 MB page table, which is too large to reasonably keep in contiguous memory. (And to swap in and out of memory with each process switch.) Note that with 4K pages, this would take 1024 pages just to hold the page table!
· One option is to use a two-tier paging system, i.e. to page the page table.
· For example, the 20 bits described above could be broken down into two 10-bit page numbers. The first identifies an entry in the outer page table, which identifies where in memory to find one page of an inner page table. The second 10 bits finds a specific entry in that inner page table, which in turn identifies a particular frame in physical memory. (The remaining 12 bits of the 32 bit logical address are the offset within the 4K frame.)
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_22A_TwoLevelPageNumberOffset.jpg]
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_17_TwoLevelPageTable.jpg]
Figure A two-level page-table scheme
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_18_AddressTranslation.jpg]
Figure - Address translation for a two-level 32-bit paging architecture
· VAX Architecture divides 32-bit addresses into 4 equal sized sections, and each page is 512 bytes, yielding an address form of:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_15A_VAX_Address.jpg]
· With a 64-bit logical address space and 4K pages, there are 52 bits worth of page numbers, which is still too many even for two-level paging. One could increase the paging level, but with 10-bit page tables it would take 7 levels of indirection, which would be prohibitively slow memory access. So some other approach must be used.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_15B_64bitAddressProblem.jpg]
64-bits Two-tiered leaves 42 bits in outer table
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_15C_ThreeLevelPageTableAddress.jpg]
Going to a fourth level still leaves 32 bits in the outer table.
Hashed Page Tables
· One common data structure for accessing data that is sparsely distributed over a broad range of possible values is with hash tables. Figure 8.16 below illustrates a hashed page table using chain-and-bucket hashing:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_19_HashedPageTable.jpg]
Figure - Hashed page table
Inverted Page Tables
· Another approach is to use an inverted page table. Instead of a table listing all of the pages for a particular process, an inverted page table lists all of the pages currently loaded in memory, for all processes. (I.e. there is one entry per frame instead of one entry per page.)
· Access to an inverted page table can be slow, as it may be necessary to search the entire table in order to find the desired page (or to discover that it is not there.) Hashing the table can help speedup the search process.
· Inverted page tables prohibit the normal method of implementing shared memory, which is to map multiple logical pages to a common physical frame. (Because each frame is now mapped to one and only one process.)
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter8/8_20_InvertedPageTable.jpg]
Figure - Inverted page table

Virtual memory

A cache stores a subset of the addresss space of RAM. An address space is the set of valid addresses. Thus, for each address in cache, there is a corresponding address in RAM. This subset of addresses (and corresponding copy of data) changes over time, based on the behavior of your program.
Cache is used to keep the most commonly used sections of RAM in the cache, where it can be accessed quickly. This is necessary because CPU speeds increase much faster than speed of memory access. If we could access RAM at 3 GHz, there wouldn't be any need for cache, because RAM could keep up. Because it can't keep up, we use cache.
What if we wanted more RAM than we had available. For example, we might have 1 M of RAM, what if we wanted 10 M? How could we manage?
One way to extend the amount of memory accessible by a program is to use disk. Thus, we can use 10 Megs of disk space. At any time, only 1 Meg resides in RAM.
In effect, RAM acts like cache for disk.
This idea of extending memory is called virtual memory. It's called "virtual" only because it's not RAM. It doesn't mean it's fake.
The real problem with disk is that it's really, really slow to access. If registers can be accessed in 1 nanosecond, and cache in 5 ns and RAM in about 100 ns, then disk is accessed in fractions of seconds. It can be a million times slower to access disk than a register.
The advantage of disk is it's easy to get lots of disk space for a small cost.
Still, becaues disk is so slow to access, we want to avoid accessing disk unnecessarily.
Uses of Virtual Memory
Virtual memory is an old concept. Before computers had cache, they had virtual memory. For a long time, virtual memory only appeared on mainframes. Personal computers in the 1980s did not use virtual memory. In fact, many good ideas that were in common use in the UNIX operating systems didn't appear until the mid 1990s in personal computer operating systems (pre-emptive multitasking and virtual memory).
Initially, virtual memory meant the idea of using disk to extend RAM. Programs wouldn't have to care whether the memory was "real" memory (i.e., RAM) or disk. The operating system and hardware would figure that out.
Later on, virtual memory was used as a means of memory protection. Every program uses a range of addressed called the address space.
The assumption of operating systems developers is that any user program can not be trusted. User programs will try to destroy themselves, other user programs, and the operating system itself. That seems like such a negative view, however, it's how operating systems are designed. It's not necessary that programs have to be deliberately malicious. Programs can be accidentally malicious (modify the data of a pointer pointing to garbage memory).
Virtual memory can help there too. It can help prevent programs from interfering with other programs.
Occasionally, you want programs to cooperate, and share memory. Virtual memory can also help in that respect.
How Virtual Memory Works
When a computer is running, many programs are simulataneously sharing the CPU. Each running program, plus the data structures needed to manage it, is called a process.
Each process is allocated an address space. This is a set of valid addresses that can be used. This address space can be changed dynamically. For example, the program might request additional memory (from dynamic memory allocation) from the operating system.
If a process tries to access an address that is not part of its address space, an error occurs, and the operating system takes over, usually killing the process (core dumps, etc).
How does virtual memory play a role? As you run a program, it generates addresses. Addresses are generated (for RISC machines) in one of three ways:
· A load instruction
· A store instruction
· Fetching an instruction
Load/store create data addresses, while fetching an instruction creates instruction addresses. Of course, RAM doesn't distinguish between the two kinds of addresses. It just sees it as an address.
Each address generated by a program is considered virtual. It must be translated to a real physical address. Thus, address tranlation is occuring all the time. As you might imagine, this must be handled in hardware, if it's to be done efficiently.
You might think translating each address from virtual to physical is a crazy idea, because of how slow it is. However, you get memory protection from address translation, so it's worth the hardware needed to get memory protection.

Demand paging:-
In computer operating systems, demand paging (as opposed to anticipatory paging) is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only if an attempt is made to access it and that page is not already in memory (i.e., if a page fault occurs). It follows that a process begins execution with none of its pages in physical memory, and many page faults will occur until most of a process's working set of pages is located in physical memory. This is an example of a lazy loading technique.
Demand paging follows that pages should only be brought into memory if the executing process demands them. This is often referred to as lazy evaluation as only those pages demanded by the process are swapped from secondary storage to main memory. Contrast this to pure swapping, where all memory for a process is swapped from secondary storage to main memory during the process startup.

Commonly, to achieve this process a page table implementation is used. The page table maps logical memory to physical memory. The page table uses a bitwise operator to mark if a page is valid or invalid. A valid page is one that currently resides in main memory. An invalid page is one that currently resides in secondary memory. When a process tries to access a page, the following steps are generally followed:

Attempt to access page.
If page is valid (in memory) then continue processing instruction as normal.
If page is invalid then a page-fault trap occurs.
Check if the memory reference is a valid reference to a location on secondary memory. If not, the process is terminated (illegal memory access). Otherwise, we have to page in the required page.
Schedule disk operation to read the desired page into main memory.
Restart the instruction that was interrupted by the operating system trap.
Advantages[edit]Demand paging, as opposed to loading all pages immediately:

Only loads pages that are demanded by the executing process.
As there is more space in main memory, more processes can be loaded reducing context switching time which utilizes large amounts of resources.
Less loading latency occurs at program startup, as less information is accessed from secondary storage and less information is brought into main memory.
As main memory is expensive compared to secondary memory, this technique helps significantly reduce the bill of material (BOM) cost in smart phones for example. Symbian OS had this feature.
Disadvantages-Individual programs face extra latency when they access a page for the first time.
Programs running on low-cost, low-power embedded systems may not have a memory management unit that supports page replacement.
Memory management with page replacement algorithms becomes slightly more complex.
Possible security risks, including vulnerability to timing attacks; see Percival 2005 Cache Missing for Fun and Profit .
Thrashing which may occur due to repeated page faults.

Performance of demand paging:-
· Demand paging can significantly affect the performance of a computer system. Let's compute the effective access time for a demand-paged memory.
· For most computer systems, the memory-access time, denoted , ranges from 10 to 200 nanoseconds.
· As long as we have no page faults, the effective access time is equal to the memory access time.
· If, however a page fault occurs, we must first read the relevant page from disk and then access the desired word.
· Let be the probability of a page fault (). We would expect to be close to zero -that is, we would expect to have only a few page faults.
· The effective access time is then
· effective access time = (1 - p)*ma + p*page fault time
· We are faced with three major components of the page-fault service time:
2. Service the page-fault interrupt.
2. Read in the page.
2. Restart the process.
1. The first and third tasks can be reduced, with careful coding, to several hundred instructions. These tasks may take from 1 to 100 microseconds each.
1. The page-switch time, however, will probably be close to 8 milliseconds.
. A typical hard disk has an average latency of 3 milliseconds, a seek of 5 milliseconds, and a transfer time of 0.05 milliseconds.
· Thus, the total paging time is about 8 milliseconds, including hardware and software time.
· If we take an average page-fault service time of 8 milliseconds and a memory-access time of 200 nanoseconds, then the effective access time in nanoseconds is
· effective access time = (1 - p)*(200) + p*(8 milliseconds)
· = (1 - p)*200 + p*8,000,000
· 		 = 200 + 7,999,800 x p.
· We see, then, that the effective access time is directly proportional to the page-fault rate.
· If one access out of 1,000 causes a page fault, the effective access time is 8.2 microseconds. The computer will be slowed down by a factor of 40 because of demand paging!
· It is important to keep the page-fault rate low in a demand-paging system. Otherwise, the effective access time increases, slowing process execution dramatically.
· An additional aspect of demand paging is the handling and overall use of swap space.
. Disk I/O to swap space is generally faster than that to the file system. It is faster because swap space is allocated in much larger blocks, and file lookups and indirect allocation methods are not used.
. The system can therefore gain better paging throughput by copying an entire file image into the swap space at process startup and then performing demand paging from the swap space.
. Another option is to demand pages from the file system initially but to write the pages to swap space as they are replaced.
Page replacement algorithms:-
[bookmark: Definition]Basic Page Replacement

1. find the location of the desired page on disk

2. find a free frame:
a. if there is a free frame, use it
b. if there is no free frame, use a page-replacement algorithm to select a victim frame
c. write the victim frame to disk; change the page and frame tables accordingly

3. read the desired page into the newly freed frame; change the page and frame tables

4. restart the user process
If no frames are free, "two" pages transfers (one in and one out) are required, which doubles the page-fault service time.
This a lot of overhead without even mentioning the time spent waiting on the paging device.
Can reduce it by using a "dirty bit" (applies to read-only pages, such as program code). This scheme can reduce I/O time by 1/2 if the page has not been modified.
Two major issues with demand paging which must be addressed:
. page-replacement algorithm: how to select a page to be replaced)
. frame-allocation algorithm: how many frames to allocate to each process)

These are important problems because disk I/O is so expensive.

Page-Replacement Algorithms

· first in, first out (FIFO)
· optimal (OPT)
· least recently used (LRU)
Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

FIFO Page Replacement

· run prior reference string with 3 frames of memory (Fig. 9.12): ?
· easy to understand and implement
· poor performance
· initialization module
· variable initialized early and used often

· everything will work, but a bad replacement choice
· increases the page fault rate and slows process execution
· it does not result in incorrect execution
Optimal Page Replacement

· replace the page which will not be used for the longest period of time (akin to A* search)
· run prior reference string with 3 frames of memory (Fig. 9.14): ?
· 9 (OPT) vs. 15 (FIFO) or really 6 (OPT) vs. 12 (FIFO) (twice as good!)
· has lowest page fault rate, and
· never suffers from Belady's anomaly
· problem? recall SJF?
· mainly used for comparison purposes
LRU Page Replacement

· idea is to try to approximate the optimum
· key difference between FIFO and OPT (other than looking backward vs. forward in time, resp.)
· FIFO uses the time when a page was brought into memory
· OPT uses the time when a page is to be used
· use recent page as an approximation of future, then we can replace the page which "has not been used" for the longest period of time
· run prior reference string with 3 frames of memory (Fig. 9.15): ?
· associate with each page the time of its last use
· does not suffer from Belady's anomaly
· major issue is implementation (need hardware support):
· counters
· every time a reference is made, copy value of clock register into page table entry
· requires a search of the page table and a write to memory (time of use) for each memory access
· stack
· when a reference is made, remove page number from stack and push onto stack
· most recently used page is always on top
· least recently used page is always on bottom
· use doubly-linked-list with head and tail pointers to implement
· no search for replacement page number

LRU-Approximation Page Replacement

Often we have a reference bit associated with each entry in the page table. Can determine which pages have been used and not used by examining the reference bits, although we do not know the "order" of use.
Can we approximate order?
Additional-reference bits algorithm:
00000000
11111111

110001000 has been used more recently than one with 01110111
If we interpret these bytes as unsigned integers, the page with the lowest value is the LRU page.
Problem: all numbers not unique.
Solution: swap out all or use FIFO.

Clock Algorithms

(or second-chance page-replacement algorithms)
· a FIFO replacement algorithm
· number of bits used is 0; leaving only the reference bit
· if 0, replace
· if 1, give page a 2nd chance and move onto next FIFO page; reset reference bit to 0 and reset arrival time to current time
· a page given a second chance will not be replaced until all other pages have been replaced (FIFO) or given second chances
· if a page is used often enough to keep its reference bit set, it will never be replaced

· implementation: the clock algorithm using a circular queue
· a pointer (hand on a clock) indicates which page is to be replaced next
· when a frame is needed, the pointer advances until it finds a page with a 0 reference bit
· as it advances, it clears the reference bits
· once a victim page is found, the page is replaced, and the new page is inserted in the circular queue in that position
· degenerates to FIFO replacement if all bits are set

Enhanced Second-chance Algorithm

· by considering the reference bit and dirty bit as an ordered pair, we now have four classes:
· (0,0): neither recently used nor modified --- best page to replace
· (0,1): not recently used but modified --- not quite as good, because the page will need to be written out before replacement
· (1,0): recently used, but clean --- probably will be used again soon
· (1,1): recently used and modified --- probably will be used again soon, and the page will need to be written out to disk before it can be replaced

· use same scheme as above, but rather than just checking if the reference bit is set to 1, we examine the class,
· replace the first page encountered in the lowest non-empty class
· may have to search circular queue several times before we find a page to be replaced
· difference with above algorithm is that here we give preference to those pages which have been modified to reduce the number of I/Os required.

Thrashing:-
Causes
In virtual memory systems, thrashing may be caused by programs or workloads that present insufficient locality of reference: if the working set of a program or a workload cannot be effectively held within physical memory, then constant data swapping, i.e., thrashing, may occur. The term was first used during the tape operating system days to describe the sound the tapes made when data was being rapidly written to and read from them. Many older low-end computers have insufficient RAM (memory) for modern usage patterns and increasing the amount of memory can often cause the computer to run noticeably faster. This speed increase is due to the reduced amount of paging necessary.

An example of this sort of situation occurred on the IBM System/370 series mainframe computer, in which a particular instruction could consist of an execute instruction (which crosses a page boundary) that points to a move instruction (which itself also crosses a page boundary), targeting a move of data from a source that crosses a page boundary, to a target of data that also crosses a page boundary. The total number of pages thus being used by this particular instruction is eight, and all eight pages must be present in memory at the same time. If the operating system allocates fewer than eight pages of actual memory, when it attempts to swap out some part of the instruction or data to bring in the remainder, the instruction will again page fault, and it will thrash on every attempt to restart the failing instruction.

Solutions
 To resolve thrashing due to excessive paging, a user can do any of the following:

Increase the amount of RAM in the computer (generally the best long-term solution).
Decrease the number of programs being run on the computer.
Replace programs that are memory-heavy with equivalents that use less memory.
Assign working priorities to programs, i.e. low,normal,high.
Improve spatial locality by replacing loops like:
image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

