Unit-2
CPU scheduling
Basic concepts-

· Almost all programs have some alternating cycle of CPU number crunching and waiting for I/O of some kind. (Even a simple fetch from memory takes a long time relative to CPU speeds.)
· In a simple system running a single process, the time spent waiting for I/O is wasted, and those CPU cycles are lost forever.
· A scheduling system allows one process to use the CPU while another is waiting for I/O, thereby making full use of otherwise lost CPU cycles.
· The challenge is to make the overall system as "efficient" and "fair" as possible, subject to varying and often dynamic conditions, and where "efficient" and "fair" are somewhat subjective terms, often subject to shifting priority policies.

Alternating Sequence of CPU And I/O Bursts

[image:]

CPU Scheduler
Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive.

Dispatcher

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
switching context
switching to user mode
jumping to the proper location in the user program to restart that
program
Dispatch latency – time it takes for the dispatcher to stop one
process and start another running

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes that complete their
execution per time unit
Turnaround time – amount of time to execute a particular
process
Waiting time – amount of time a process has been waiting
in the ready queue
Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment).

Preemptive Scheduling
· CPU scheduling decisions take place under one of four conditions:
1. When a process switches from the running state to the waiting state, such as for an I/O request or invocation of the wait() system call.
2. When a process switches from the running state to the ready state, for example in response to an interrupt.
3. When a process switches from the waiting state to the ready state, say at completion of I/O or a return from wait().
4. When a process terminates.
· For conditions 1 and 4 there is no choice - A new process must be selected.
· For conditions 2 and 3 there is a choice - To either continue running the current process, or select a different one.
· If scheduling takes place only under conditions 1 and 4, the system is said to be non-preemptive, or cooperative. Under these conditions, once a process starts running it keeps running, until it either voluntarily blocks or until it finishes. Otherwise the system is said to be preemptive.
· Windows used non-preemptive scheduling up to Windows 3.x, and started using pre-emptive scheduling with Win95. Macs used non-preemptive prior to OSX, and pre-emptive since then. Note that pre-emptive scheduling is only possible on hardware that supports a timer interrupt.
· Note that pre-emptive scheduling can cause problems when two processes share data, because one process may get interrupted in the middle of updating shared data structures. Chapter 6 will examine this issue in greater detail.
· Preemption can also be a problem if the kernel is busy implementing a system call (e.g. updating critical kernel data structures) when the preemption occurs. Most modern UNIXes deal with this problem by making the process wait until the system call has either completed or blocked before allowing the preemption Unfortunately this solution is problematic for real-time systems, as real-time response can no longer be guaranteed.
· Some critical sections of code protect themselves from concurrency problems by disabling interrupts before entering the critical section and re-enabling interrupts on exiting the section. Needless to say, this should only be done in rare situations, and only on very short pieces of code that will finish quickly, (usually just a few machine instructions.)
Dispatcher
· The dispatcher is the module that gives control of the CPU to the process selected by the scheduler. This function involves:
· Switching context.
· Switching to user mode.
· Jumping to the proper location in the newly loaded program.
· The dispatcher needs to be as fast as possible, as it is run on every context switch. The time consumed by the dispatcher is known as dispatch latency.
Scheduling Criteria
· There are several different criteria to consider when trying to select the "best" scheduling algorithm for a particular situation and environment, including:
· CPU utilization - Ideally the CPU would be busy 100% of the time, so as to waste 0 CPU cycles. On a real system CPU usage should range from 40% (lightly loaded) to 90% (heavily loaded.)
· Throughput - Number of processes completed per unit time. May range from 10 / second to 1 / hour depending on the specific processes.
· Turnaround time - Time required for a particular process to complete, from submission time to completion. (Wall clock time.)
· Waiting time - How much time processes spend in the ready queue waiting their turn to get on the CPU.
· (Load average - The average number of processes sitting in the ready queue waiting their turn to get into the CPU. Reported in 1-minute, 5-minute, and 15-minute averages by "uptime" and "who".)
· Response time - The time taken in an interactive program from the issuance of a command to the commence of a response to that command.
· In general one wants to optimize the average value of a criteria (Maximize CPU utilization and throughput, and minimize all the others.) However some times one wants to do something different, such as to minimize the maximum response time.
· Sometimes it is most desirable to minimize the variance of a criteria than the actual value. I.e. users are more accepting of a consistent predictable system than an inconsistent one, even if it is a little bit slower.
Scheduling Algorithms
The following subsections will explain several common scheduling strategies, looking at only a single CPU burst each for a small number of processes. Obviously real systems have to deal with a lot more simultaneous processes executing their CPU-I/O burst cycles.
First-Come First-Serve Scheduling, FCFS
· FCFS is very simple - Just a FIFO queue, like customers waiting in line at the bank or the post office or at a copying machine.
· Unfortunately, however, FCFS can yield some very long average wait times, particularly if the first process to get there takes a long time. For example, consider the following three processes:
	Process
	Burst Time

	P1
	24

	P2
	3

	P3
	3

· In the first Gantt chart below, process P1 arrives first. The average waiting time for the three processes is (0 + 24 + 27) / 3 = 17.0 ms.
· In the second Gantt chart below, the same three processes have an average wait time of (0 + 3 + 6) / 3 = 3.0 ms. The total run time for the three bursts is the same, but in the second case two of the three finish much quicker, and the other process is only delayed by a short amount.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_FCFS_Chart.jpg]
· FCFS can also block the system in a busy dynamic system in another way, known as the convoy effect. When one CPU intensive process blocks the CPU, a number of I/O intensive processes can get backed up behind it, leaving the I/O devices idle. When the CPU hog finally relinquishes the CPU, then the I/O processes pass through the CPU quickly, leaving the CPU idle while everyone queues up for I/O, and then the cycle repeats itself when the CPU intensive process gets back to the ready queue.
Shortest-Job-First Scheduling, SJF
· The idea behind the SJF algorithm is to pick the quickest fastest little job that needs to be done, get it out of the way first, and then pick the next smallest fastest job to do next.
· (Technically this algorithm picks a process based on the next shortest CPU burst, not the overall process time.)
· For example, the Gantt chart below is based upon the following CPU burst times, (and the assumption that all jobs arrive at the same time.)
	Process
	Burst Time

	P1
	6

	P2
	8

	P3
	7

	P4
	3

[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_SJF_Chart.jpg]
· In the case above the average wait time is (0 + 3 + 9 + 16) / 4 = 7.0 ms, (as opposed to 10.25 ms for FCFS for the same processes.)
· SJF can be proven to be the fastest scheduling algorithm, but it suffers from one important problem: How do you know how long the next CPU burst is going to be?
· For long-term batch jobs this can be done based upon the limits that users set for their jobs when they submit them, which encourages them to set low limits, but risks their having to re-submit the job if they set the limit too low. However that does not work for short-term CPU scheduling on an interactive system.
· Another option would be to statistically measure the run time characteristics of jobs, particularly if the same tasks are run repeatedly and predictably. But once again that really isn't a viable option for short term CPU scheduling in the real world.
· A more practical approach is to predict the length of the next burst, based on some historical measurement of recent burst times for this process. One simple, fast, and relatively accurate method is the exponential average, which can be defined as follows. (The book uses tau and t for their variables, but those are hard to distinguish from one another and don't work well in HTML.)
estimate[i + 1] = alpha * burst[i] + (1.0 - alpha) * estimate[i]
· In this scheme the previous estimate contains the history of all previous times, and alpha serves as a weighting factor for the relative importance of recent data versus past history. If alpha is 1.0, then past history is ignored, and we assume the next burst will be the same length as the last burst. If alpha is 0.0, then all measured burst times are ignored, and we just assume a constant burst time. Most commonly alpha is set at 0.5,
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_03_BurstPrediction.jpg]
Fig- prediction of length of next cpu burst
· SJF can be either preemptive or non-preemptive. Preemption occurs when a new process arrives in the ready queue that has a predicted burst time shorter than the time remaining in the process whose burst is currently on the CPU. Preemptive SJF is sometimes referred to as shortest remaining time first scheduling.
· For example, the following Gantt chart is based upon the following data:
	Process
	Arrival Time
	Burst Time

	P1
	0
	8

	P2
	1
	4

	P3
	2
	9

	p4
	3
	5

[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_PreemptiveSJF_Chart.jpg]
· The average wait time in this case is ((5 - 3) + (10 - 1) + (17 - 2)) / 4 = 26 / 4 = 6.5 ms. (As opposed to 7.75 ms for non-preemptive SJF or 8.75 for FCFS.)
Priority Scheduling
· Priority scheduling is a more general case of SJF, in which each job is assigned a priority and the job with the highest priority gets scheduled first. (SJF uses the inverse of the next expected burst time as its priority - The smaller the expected burst, the higher the priority.)
· Note that in practice, priorities are implemented using integers within a fixed range, but there is no agreed-upon convention as to whether "high" priorities use large numbers or small numbers. This book uses low number for high priorities, with 0 being the highest possible priority.
· For example, the following Gantt chart is based upon these process burst times and priorities, and yields an average waiting time of 8.2 ms:
	Process
	Burst Time
	Priority

	P1
	10
	3

	P2
	1
	1

	P3
	2
	4

	P4
	1
	5

	P5
	5
	2

[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_PriorityChart.jpg]
· Priorities can be assigned either internally or externally. Internal priorities are assigned by the OS using criteria such as average burst time, ratio of CPU to I/O activity, system resource use, and other factors available to the kernel. External priorities are assigned by users, based on the importance of the job, fees paid, politics, etc.
· Priority scheduling can be either preemptive or non-preemptive.
· Priority scheduling can suffer from a major problem known as indefinite blocking, or starvation, in which a low-priority task can wait forever because there are always some other jobs around that have higher priority.
· If this problem is allowed to occur, then processes will either run eventually when the system load lightens (at say 2:00 a.m.), or will eventually get lost when the system is shut down or crashes. (There are rumors of jobs that have been stuck for years.)
· One common solution to this problem is aging, in which priorities of jobs increase the longer they wait. Under this scheme a low-priority job will eventually get its priority raised high enough that it gets run.
Round Robin Scheduling
· Round robin scheduling is similar to FCFS scheduling, except that CPU bursts are assigned with limits called time quantum.
· When a process is given the CPU, a timer is set for whatever value has been set for a time quantum.
· If the process finishes its burst before the time quantum timer expires, then it is swapped out of the CPU just like the normal FCFS algorithm.
· If the timer goes off first, then the process is swapped out of the CPU and moved to the back end of the ready queue.
· The ready queue is maintained as a circular queue, so when all processes have had a turn, then the scheduler gives the first process another turn, and so on.
· RR scheduling can give the effect of all processors sharing the CPU equally, although the average wait time can be longer than with other scheduling algorithms. In the following example the average wait time is 5.66 ms.
	Process
	Burst Time

	P1
	24

	P2
	3

	P3
	3

[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_RoundRobinChart.jpg]
· The performance of RR is sensitive to the time quantum selected. If the quantum is large enough, then RR reduces to the FCFS algorithm; If it is very small, then each process gets 1/nth of the processor time and share the CPU equally.
· BUT, a real system invokes overhead for every context switch, and the smaller the time quantum the more context switches there are. Most modern systems use time quantum between 10 and 100 milliseconds, and context switch times on the order of 10 microseconds, so the overhead is small relative to the time quantum.

· Turn around time also varies with quantum time, in a non-apparent manner. Consider, for example the processes shown in Figure below
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_05_TurnaroundTime.jpg]
Fig- turnaround varies for each quantum.
· In general, turnaround time is minimized if most processes finish their next cpu burst within one time quantum. For example, with three processes of 10 ms bursts each, the average turnaround time for 1 ms quantum is 29, and for 10 ms quantum it reduces to 20. However, if it is made too large, then RR just degenerates to FCFS. A rule of thumb is that 80% of CPU bursts should be smaller than the time quantum.
Multilevel Queue Scheduling
· When processes can be readily categorized, then multiple separate queues can be established, each implementing whatever scheduling algorithm is most appropriate for that type of job, and/or with different parametric adjustments.
· Scheduling must also be done between queues, that is scheduling one queue to get time relative to other queues. Two common options are strict priority (no job in a lower priority queue runs until all higher priority queues are empty) and round-robin (each queue gets a time slice in turn, possibly of different sizes.)
· Note that under this algorithm jobs cannot switch from queue to queue - Once they are assigned a queue, that is their queue until they finish.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_06_MultilevelQueueScheduling.jpg]
Fig- multilevel queue scheduling
Multilevel Feedback-Queue Scheduling
· Multilevel feedback queue scheduling is similar to the ordinary multilevel queue scheduling described above, except jobs may be moved from one queue to another for a variety of reasons:
· If the characteristics of a job change between CPU-intensive and I/O intensive, then it may be appropriate to switch a job from one queue to another.
· Aging can also be incorporated, so that a job that has waited for a long time can get bumped up into a higher priority queue for a while.
· Multilevel feedback queue scheduling is the most flexible, because it can be tuned for any situation. But it is also the most complex to implement because of all the adjustable parameters. Some of the parameters which define one of these systems include:
· The number of queues.
· The scheduling algorithm for each queue.
· The methods used to upgrade or demote processes from one queue to another. (Which may be different.)
· The method used to determine which queue a process enters initially.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter5/5_07_MultilevelFeedbackQueues.jpg]

	Fig-multilevel feedback queue scheduling

	

Deadlocks
Deadlock Characterization

 1. Mutual exclusion: only one process at a time can use a resource.
 2. Hold and wait: a process holding at least one resource is waiting to acquire additional resources held
 by other processes.
 3. No preemption: a resource can be released only voluntarily by the process holding it, after that
 process has Completed its task.
 4. Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a
 resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting for a
 resource that is held by Pn, and P0 is waiting for a resource that is held by P0.
 Deadlock can arise if four conditions hold simultaneously.

System Model
· For the purposes of deadlock discussion, a system can be modeled as a collection of limited resources, which can be partitioned into different categories, to be allocated to a number of processes, each having different needs.
· Resource categories may include memory, printers, CPUs, open files, tape drives, CD-ROMS, etc.
· By definition, all the resources within a category are equivalent, and a request of this category can be equally satisfied by any one of the resources in that category. If this is not the case (i.e. if there is some difference between the resources within a category), then that category needs to be further divided into separate categories. For example, "printers" may need to be separated into "laser printers" and "color inkjet printers".
· Some categories may have a single resource.
· In normal operation a process must request a resource before using it, and release it when it is done, in the following sequence:
1. Request - If the request cannot be immediately granted, then the process must wait until the resource(s) it needs become available. For example the system calls open(), malloc(), new(), and request().
2. Use - The process uses the resource, e.g. prints to the printer or reads from the file.
3. Release - The process relinquishes the resource. so that it becomes available for other processes. For example, close(), free(), delete(), and release().
· For all kernel-managed resources, the kernel keeps track of what resources are free and which are allocated, to which process they are allocated, and a queue of processes waiting for this resource to become available. Application-managed resources can be controlled using mutexes or wait() and signal() calls, (i.e. binary or counting semaphores.)
· A set of processes is deadlocked when every process in the set is waiting for a resource that is currently allocated to another process in the set (and which can only be released when that other waiting process makes progress.)

Necessary Conditions
· There are four conditions that are necessary to achieve deadlock:
1. Mutual Exclusion - At least one resource must be held in a non-sharable mode; If any other process requests this resource, then that process must wait for the resource to be released.
2. Hold and Wait - A process must be simultaneously holding at least one resource and waiting for at least one resource that is currently being held by some other process.
3. No preemption - Once a process is holding a resource (i.e. once its request has been granted), then that resource cannot be taken away from that process until the process voluntarily releases it.
4. Circular Wait - A set of processes { P0, P1, P2, . . ., PN } must exist such that every P[i] is waiting for P[(i + 1) % (N + 1)]. (Note that this condition implies the hold-and-wait condition, but it is easier to deal with the conditions if the four are considered separately.)
Resource-Allocation Graph
· In some cases deadlocks can be understood more clearly through the use of Resource-Allocation Graphs, having the following properties:
· A set of resource categories, { R1, R2, R3, . . ., RN }, which appear as square nodes on the graph. Dots inside the resource nodes indicate specific instances of the resource. (E.g. two dots might represent two laser printers.)
· A set of processes, { P1, P2, P3, . . ., PN }
· Request Edges - A set of directed arcs from Pi to Rj, indicating that process Pi has requested Rj, and is currently waiting for that resource to become available.
· Assignment Edges - A set of directed arcs from Rj to Pi indicating that resource Rj has been allocated to process Pi, and that Pi is currently holding resource Rj.
· Note that a request edge can be converted into an assignment edge by reversing the direction of the arc when the request is granted. (However note also that request edges point to the category box, whereas assignment edges emanate from a particular instance dot within the box.)
· For example:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_01_ResourceAllocation.jpg]
Figure - Resource allocation graph
· If a resource-allocation graph contains no cycles, then the system is not deadlocked. (When looking for cycles, remember that these are directed graphs.) See the example in Figure 7.2 above.
· If a resource-allocation graph does contain cycles AND each resource category contains only a single instance, then a deadlock exists.
· If a resource category contains more than one instance, then the presence of a cycle in the resource-allocation graph indicates the possibility of a deadlock, but does not guarantee one. Consider, for example, Figures 7.3 and 7.4 below:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_02_Deadlock.jpg]
Figure - Resource allocation graph with a deadlock
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_03_CycleNoDeadlock.jpg]
Figure - Resource allocation graph with a cycle but no deadlock
Methods for Handling Deadlocks
· Generally speaking there are three ways of handling deadlocks:
1. Deadlock prevention or avoidance - Do not allow the system to get into a deadlocked state.
2. Deadlock detection and recovery - Abort a process or preempt some resources when deadlocks are detected.
3. Ignore the problem all together - If deadlocks only occur once a year or so, it may be better to simply let them happen and reboot as necessary than to incur the constant overhead and system performance penalties associated with deadlock prevention or detection. This is the approach that both Windows and UNIX take.
· In order to avoid deadlocks, the system must have additional information about all processes. In particular, the system must know what resources a process will or may request in the future. (Ranging from a simple worst-case maximum to a complete resource request and release plan for each process, depending on the particular algorithm.)
· Deadlock detection is fairly straightforward, but deadlock recovery requires either aborting processes or preempting resources, neither of which is an attractive alternative.
· If deadlocks are neither prevented nor detected, then when a deadlock occurs the system will gradually slow down, as more and more processes become stuck waiting for resources currently held by the deadlock and by other waiting processes. Unfortunately this slowdown can be indistinguishable from a general system slowdown when a real-time process has heavy computing needs.
Deadlock Prevention
· Deadlocks can be prevented by preventing at least one of the four required conditions:
Mutual Exclusion
· Shared resources such as read-only files do not lead to deadlocks.
· Unfortunately some resources, such as printers and tape drives, require exclusive access by a single process.
Hold and Wait
· To prevent this condition processes must be prevented from holding one or more resources while simultaneously waiting for one or more others. There are several possibilities for this:
· Require that all processes request all resources at one time. This can be wasteful of system resources if a process needs one resource early in its execution and doesn't need some other resource until much later.
· Require that processes holding resources must release them before requesting new resources, and then re-acquire the released resources along with the new ones in a single new request. This can be a problem if a process has partially completed an operation using a resource and then fails to get it re-allocated after releasing it.
· Either of the methods described above can lead to starvation if a process requires one or more popular resources.
No Preemption
· Preemption of process resource allocations can prevent this condition of deadlocks, when it is possible.
· One approach is that if a process is forced to wait when requesting a new resource, then all other resources previously held by this process are implicitly released, (preempted), forcing this process to re-acquire the old resources along with the new resources in a single request, similar to the previous discussion.
· Another approach is that when a resource is requested and not available, then the system looks to see what other processes currently have those resources and are themselves blocked waiting for some other resource. If such a process is found, then some of their resources may get preempted and added to the list of resources for which the process is waiting.
· Either of these approaches may be applicable for resources whose states are easily saved and restored, such as registers and memory, but are generally not applicable to other devices such as printers and tape drives.
Circular Wait
· One way to avoid circular wait is to number all resources, and to require that processes request resources only in strictly increasing (or decreasing) order.
· In other words, in order to request resource Rj, a process must first release all Ri such that i >= j.
· One big challenge in this scheme is determining the relative ordering of the different resources
 Deadlock Avoidance
· The general idea behind deadlock avoidance is to prevent deadlocks from ever happening, by preventing at least one of the aforementioned conditions.
· This requires more information about each process, AND tends to lead to low device utilization. (I.e. it is a conservative approach.)
· In some algorithms the scheduler only needs to know the maximum number of each resource that a process might potentially use. In more complex algorithms the scheduler can also take advantage of the schedule of exactly what resources may be needed in what order.
· When a scheduler sees that starting a process or granting resource requests may lead to future deadlocks, then that process is just not started or the request is not granted.
· A resource allocation state is defined by the number of available and allocated resources, and the maximum requirements of all processes in the system.
Safe State
· A state is safe if the system can allocate all resources requested by all processes (up to their stated maximums) without entering a deadlock state.
· More formally, a state is safe if there exists a safe sequence of processes { P0, P1, P2, ..., PN } such that all of the resource requests for Pi can be granted using the resources currently allocated to Pi and all processes Pj where j < i. (I.e. if all the processes prior to Pi finish and free up their resources, then Pi will be able to finish also, using the resources that they have freed up.)
· If a safe sequence does not exist, then the system is in an unsafe state, which MAY lead to deadlock. (All safe states are deadlock free, but not all unsafe states lead to deadlocks.)
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_06_StateSpaces.jpg]
Figure - Safe, unsafe, and deadlocked state spaces.
· For example, consider a system with 12 tape drives, allocated as follows. Is this a safe state? What is the safe sequence?
	
	Maximum Needs
	Current Allocation

	P0
	10
	5

	P1
	4
	2

	P2
	9
	2

· What happens to the above table if process P2 requests and is granted one more tape drive?
· Key to the safe state approach is that when a request is made for resources, the request is granted only if the resulting allocation state is a safe one.
Resource-Allocation Graph Algorithm
· If resource categories have only single instances of their resources, then deadlock states can be detected by cycles in the resource-allocation graphs.
· In this case, unsafe states can be recognized and avoided by augmenting the resource-allocation graph with claim edges, noted by dashed lines, which point from a process to a resource that it may request in the future.
· In order for this technique to work, all claim edges must be added to the graph for any particular process before that process is allowed to request any resources. (Alternatively, processes may only make requests for resources for which they have already established claim edges, and claim edges cannot be added to any process that is currently holding resources.)
· When a process makes a request, the claim edge Pi->Rj is converted to a request edge. Similarly when a resource is released, the assignment reverts back to a claim edge.
· This approach works by denying requests that would produce cycles in the resource-allocation graph, taking claim edges into effect.
· Consider for example what happens when process P2 requests resource R2:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_07_DeadlockAvoidance.jpg]
Figure - Resource allocation graph for deadlock avoidance
· The resulting resource-allocation graph would have a cycle in it, and so the request cannot be granted.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_08_UnsafeState.jpg]
Figure - An unsafe state in a resource allocation graph
Banker's Algorithm
· For resource categories that contain more than one instance the resource-allocation graph method does not work, and more complex (and less efficient) methods must be chosen.
· The Banker's Algorithm gets its name because it is a method that bankers could use to assure that when they lend out resources they will still be able to satisfy all their clients. (A banker won't loan out a little money to start building a house unless they are assured that they will later be able to loan out the rest of the money to finish the house.)
· When a process starts up, it must state in advance the maximum allocation of resources it may request, up to the amount available on the system.
· When a request is made, the scheduler determines whether granting the request would leave the system in a safe state. If not, then the process must wait until the request can be granted safely.
· The banker's algorithm relies on several key data structures: (where n is the number of processes and m is the number of resource categories.)
· Available[m] indicates how many resources are currently available of each type.
· Max[n][m] indicates the maximum demand of each process of each resource.
· Allocation[n][m] indicates the number of each resource category allocated to each process.
· Need[n][m] indicates the remaining resources needed of each type for each process. (Note that Need[i][j] = Max[i][j] - Allocation[i][j] for all i, j.)
· For simplification of discussions, we make the following notations / observations:
· One row of the Need vector, Need[i], can be treated as a vector corresponding to the needs of process i, and similarly for Allocation and Max.
· A vector X is considered to be <= a vector Y if X[i] <= Y[i] for all i.
Safety Algorithm
· In order to apply the Banker's algorithm, we first need an algorithm for determining whether or not a particular state is safe.
· This algorithm determines if the current state of a system is safe, according to the following steps:
1. Let Work and Finish be vectors of length m and n respectively.
· Work is a working copy of the available resources, which will be modified during the analysis.
· Finish is a vector of booleans indicating whether a particular process can finish. (or has finished so far in the analysis.)
· Initialize Work to Available, and Finish to false for all elements.
2. Find an i such that both (A) Finish[i] == false, and (B) Need[i] < Work. This process has not finished, but could with the given available working set. If no such i exists, go to step 4.
3. Set Work = Work + Allocation[i], and set Finish[i] to true. This corresponds to process i finishing up and releasing its resources back into the work pool. Then loop back to step 2.
4. If finish[i] == true for all i, then the state is a safe state, because a safe sequence has been found.
· (JTB's Modification:
1. In step 1. instead of making Finish an array of booleans initialized to false, make it an array of ints initialized to 0. Also initialize an int s = 0 as a step counter.
2. In step 2, look for Finish[i] == 0.
3. In step 3, set Finish[i] to ++s. S is counting the number of finished processes.
4. For step 4, the test can be either Finish[i] > 0 for all i, or s >= n. The benefit of this method is that if a safe state exists, then Finish[] indicates one safe sequence (of possibly many.))
Resource-Request Algorithm (The Bankers Algorithm)
· Now that we have a tool for determining if a particular state is safe or not, we are now ready to look at the Banker's algorithm itself.
· This algorithm determines if a new request is safe, and grants it only if it is safe to do so.
· When a request is made (that does not exceed currently available resources), pretend it has been granted, and then see if the resulting state is a safe one. If so, grant the request, and if not, deny the request, as follows:
1. Let Request[n][m] indicate the number of resources of each type currently requested by processes. If Request[i] > Need[i] for any process i, raise an error condition.
2. If Request[i] > Available for any process i, then that process must wait for resources to become available. Otherwise the process can continue to step 3.
3. Check to see if the request can be granted safely, by pretending it has been granted and then seeing if the resulting state is safe. If so, grant the request, and if not, then the process must wait until its request can be granted safely.The procedure for granting a request (or pretending to for testing purposes) is:
· Available = Available - Request
· Allocation = Allocation + Request
· Need = Need - Request
An Illustrative Example
· Consider the following situation:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_IllustrativeExample.jpg]
· And now consider what happens if process P1 requests 1 instance of A and 2 instances of C. (Request[1] = (1, 0, 2))
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_IllustrativeExample_2.jpg]
· What about requests of (3, 3,0) by P4? or (0, 2, 0) by P0? Can these be safely granted? Why or why not?
Deadlock Detection
· If deadlocks are not avoided, then another approach is to detect when they have occurred and recover somehow.
· In addition to the performance hit of constantly checking for deadlocks, a policy / algorithm must be in place for recovering from deadlocks, and there is potential for lost work when processes must be aborted or have their resources preempted.
Single Instance of Each Resource Type
· If each resource category has a single instance, then we can use a variation of the resource-allocation graph known as a wait-for graph.
· A wait-for graph can be constructed from a resource-allocation graph by eliminating the resources and collapsing the associated edges, as shown in the figure below.
· An arc from Pi to Pj in a wait-for graph indicates that process Pi is waiting for a resource that process Pj is currently holding.
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_09_TwoGraphs.jpg]
Figure - (a) Resource allocation graph. (b) Corresponding wait-for graph
· As before, cycles in the wait-for graph indicate deadlocks.
· This algorithm must maintain the wait-for graph, and periodically search it for cycles.
 Several Instances of a Resource Type
· The detection algorithm outlined here is essentially the same as the Banker's algorithm, with two subtle differences:
· In step 1, the Banker's Algorithm sets Finish[i] to false for all i. The algorithm presented here sets Finish[i] to false only if Allocation[i] is not zero. If the currently allocated resources for this process are zero, the algorithm sets Finish[i] to true. This is essentially assuming that IF all of the other processes can finish, then this process can finish also. Furthermore, this algorithm is specifically looking for which processes are involved in a deadlock situation, and a process that does not have any resources allocated cannot be involved in a deadlock, and so can be removed from any further consideration.
· Steps 2 and 3 are unchanged
· In step 4, the basic Banker's Algorithm says that if Finish[i] == true for all i, that there is no deadlock. This algorithm is more specific, by stating that if Finish[i] == false for any process Pi, then that process is specifically involved in the deadlock which has been detected.
· (Note: An alternative method was presented above, in which Finish held integers instead of booleans. This vector would be initialized to all zeros, and then filled with increasing integers as processes are detected which can finish. If any processes are left at zero when the algorithm completes, then there is a deadlock, and if not, then the integers in finish describe a safe sequence. To modify this algorithm to match this section of the text, processes with allocation = zero could be filled in with N, N - 1, N - 2, etc. in step 1, and any processes left with Finish = 0 in step 4 are the deadlocked processes.)
· Consider, for example, the following state, and determine if it is currently deadlocked:
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_IllustrativeExample_3.jpg]
· Now suppose that process P2 makes a request for an additional instance of type C, yielding the state shown below. Is the system now deadlocked?
[image: http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/Chapter7/7_IllustrativeExample_4.jpg]
 Detection-Algorithm Usage
· When should the deadlock detection be done? Frequently, or infrequently?
· The answer may depend on how frequently deadlocks are expected to occur, as well as the possible consequences of not catching them immediately. (If deadlocks are not removed immediately when they occur, then more and more processes can "back up" behind the deadlock, making the eventual task of unblocking the system more difficult and possibly damaging to more processes.)
· There are two obvious approaches, each with trade-offs:
1. Do deadlock detection after every resource allocation which cannot be immediately granted. This has the advantage of detecting the deadlock right away, while the minimum number of processes are involved in the deadlock. (One might consider that the process whose request triggered the deadlock condition is the "cause" of the deadlock, but realistically all of the processes in the cycle are equally responsible for the resulting deadlock.) The down side of this approach is the extensive overhead and performance hit caused by checking for deadlocks so frequently.
2. Do deadlock detection only when there is some clue that a deadlock may have occurred, such as when CPU utilization reduces to 40% or some other magic number. The advantage is that deadlock detection is done much less frequently, but the down side is that it becomes impossible to detect the processes involved in the original deadlock, and so deadlock recovery can be more complicated and damaging to more processes.
3. (As I write this, a third alternative comes to mind: Keep a historical log of resource allocations, since that last known time of no deadlocks. Do deadlock checks periodically (once an hour or when CPU usage is low?), and then use the historical log to trace through and determine when the deadlock occurred and what processes caused the initial deadlock. Unfortunately I'm not certain that breaking the original deadlock would then free up the resulting log jam.)
Recovery From Deadlock
· There are three basic approaches to recovery from deadlock:
1. Inform the system operator, and allow him/her to take manual intervention.
2. Terminate one or more processes involved in the deadlock
3. Preempt resources.
 Process Termination
· Two basic approaches, both of which recover resources allocated to terminated processes:
· Terminate all processes involved in the deadlock. This definitely solves the deadlock, but at the expense of terminating more processes than would be absolutely necessary.
· Terminate processes one by one until the deadlock is broken. This is more conservative, but requires doing deadlock detection after each step.
· In the latter case there are many factors that can go into deciding which processes to terminate next:
2. Process priorities.
2. How long the process has been running, and how close it is to finishing.
2. How many and what type of resources is the process holding. (Are they easy to preempt and restore?)
2. How many more resources does the process need to complete.
2. How many processes will need to be terminated
2. Whether the process is interactive or batch.
2. (Whether or not the process has made non-restorable changes to any resource.)
Resource Preemption
· When preempting resources to relieve deadlock, there are three important issues to be addressed:
1. Selecting a victim - Deciding which resources to preempt from which processes involves many of the same decision criteria outlined above.
2. Rollback - Ideally one would like to roll back a preempted process to a safe state prior to the point at which that resource was originally allocated to the process. Unfortunately it can be difficult or impossible to determine what such a safe state is, and so the only safe rollback is to roll back all the way back to the beginning. (I.e. abort the process and make it start over.)
3. Starvation - How do you guarantee that a process won't starve because its resources are constantly being preempted? One option would be to use a priority system, and increase the priority of a process every time its resources get preempted. Eventually it should get a high enough priority that it won't get preempted any more.

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image1.emf

image2.jpeg

image3.jpeg

image4.jpeg

