PAPER TITLE (12pt Times New Roman, Bold, Center Aligned) Correspondence Author ^{*1}, Co-author²(11pt Times New Roman, Bold, Center) * Department, Collage, Country (11pt Times New Roman, Center)

ABSTRACT

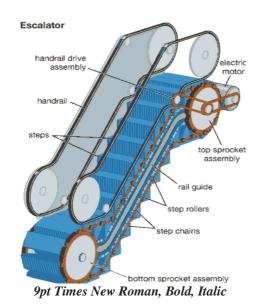
An abstract of no more than 200 words (10pt Times New Roman, Justified).

KEYWORDS: 2-6 Keywords are required (10pt Times New Roman, Justified).

I. INTRODUCTION

All content should be written in English and should be in 1 column.

- Page type will be A4 with normal margin, word spacing should be 1.
- No space will be added before or after paragraph.
- This section should be typed in character size 10pt Times New Roman, Justified.


II. MATERIALS AND METHODS

Subheading

Subheading should be 10pt Times new Roman, justified.

This section should be typed in character size 10pt Times New Roman, Justified

Figure:

Sub-subheading

Sub-subheading should be 10pt Times new roman, Italic, Justified.

III. RESULTS AND DISCUSSION

The results and discussion may be combined into a common section or obtainable separately. They may also be broken into subsets with short, revealing captions.

This section should be typed in character size 10pt Times New Roman, Justified

Formulae:

$$R_{a} = R_{a}i_{a} + i_{a}\frac{di_{a}}{dt} + M_{ab}\frac{di_{b}}{dt} + M_{ac}\frac{di_{c}}{dt} + a_{a} \qquad (1)$$

$$\mathbf{R}_{b} = \mathbf{R}_{b} \mathbf{i}_{a} + \mathbf{i}_{b} \frac{d\mathbf{i}_{b}}{dt} + M_{ba} \frac{d\mathbf{i}_{a}}{dt} + M_{bc} \frac{d\mathbf{i}_{c}}{dt} + a_{b} \qquad (2)$$

$$R_{c} = R_{c}i_{c} + i_{c}\frac{di_{c}}{dt} + M_{ca}\frac{di_{a}}{dt} + M_{cb}\frac{di_{b}}{dt} + a_{c}$$
(3)

Tables:

Table 9. Comparison table for motoring mode			
	PI	PID	FUZZY
SPEED(rpm)	1500	1500	1500
Settling time of	0.8	1.8	0.4
speed			
Speed	±20rpm	±10rpm	-
fluctuations			
Torque ripples	±6	±0.5	±0.05

Table 9. Comparison table for motoring mode

IV. CONCLUSION

This fragment should obviously state the foremost conclusions of the exploration and give a coherent explanation of their significance and consequence.

This section should be typed in character size 10pt Times New Roman, Justified

V. ACKNOWLEDGEMENTS

This section should be typed in character size 10pt Times New Roman, Justified.

VI. REFERENCES

- [1] Xue Li, Vasu D. Chakravarthy, Bin Wang, and Zhiqiang Wu, "Spreading Code Design of Adaptive Non-Contiguous SOFDM for Dynamic Spectrum Access" in IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 1, FEBRUARY 2011
- [2] J. D. Poston and W. D. Horne, "Discontiguous OFDM considerations for dynamic spectrum access in idel TV channels," in Proc. IEEE DySPAN, 2005.
- [3] R. Rajbanshi, Q. Chen, A.Wyglinski, G. Minden, and J. Evans, "Quantitative comparison of agile modulation technique for cognitive radio tranceivers," in Proc. IEEE CCNC, Jan. 2007, pp. 1144– 1148.
- [4] V. Chakravarthy, X. Li, Z. Wu, M. Temple, and F. Garber, "Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency—Part I," IEEE Trans. Commun., vol. 57, no. 12, pp. 3794–3804, Dec. 2009.
- [5] V. Chakravarthy, Z. Wu, A. Shaw, M. Temple, R. Kannan, and F. Garber, "A general overlay/underlay analytic expression for cognitive radio waveforms," in Proc. Int. Waveform Diversity Design Conf., 2007.
- [6] V. Chakravarthy, Z. Wu, M. Temple, F. Garber, and X. Li, "Cognitive radio centric overlay-underlay waveform," in Proc. 3rd IEEE Symp. New Frontiers Dynamic Spectrum Access Netw., 2008, pp. 1–10.
- [7] X. Li, R. Zhou, V. Chakravarthy, and Z. Wu, "Intercarrier interference immune single carrier OFDM via magnitude shift keying modulation," in Proc. IEEE Global Telecomm. Conf. GLOBECOM, Dec. 2009, pp. 1–6.
- [8] Parsaee, G.; Yarali, A., "OFDMA for the 4th generation cellular networks" in Proc. IEEE Electrical and Computer Engineering, Vol.4, pp. 2325 2330, May 2004.
- [9] 3GPP R1-050971,"R1-050971 Single Carrier Uplink Options for EUTRA: IFDMA/DFT-SOFDM Discussion and Initial Performance Results ",http://www.3GPP.org,Aug 2005
- [10] IEEE P802.16e/D12, 'Draft IEEE Standard for Local and metropolitan area networks-- Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems', October 2005
- [11] 3GPP RP-040461, Study Item: Evolved UTRA and UTRAN, December 200
- [12] R. Mirghani, and M. Ghavami, "Comparison between Wavelet-based and Fourier-based Multicarrier UWB Systems", IET Communications, Vol. 2, Issue 2, pp. 353-358, 2008.
- [13] R. Dilmirghani, M. Ghavami, "Wavelet Vs Fourier Based UWB Systems", 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1-5, Sep. 2007.
- [14] M. Weeks, Digital Signal Processing Using Matlab and Wavelets, Infinity Science Press LLC, 2007.
- [15] S. R. Baig, F. U. Rehman, and M. J. Mughal, "Performance Comparison of DFT, Discrete Wavelet Packet and Wavelet Transforms in an OFDM Transceiver for Multipath Fading Channel,",9th IEEE International Multitopic Conference, pp. 1-6, Dec. 2005.
- [16] N. Ahmed, Joint Detection Strategies for Orthogonal Frequency Division Multiplexing, Dissertation for Master of Science, Rice University, Houston, Texas. pp. 1-51, Apr. 2000.